BibTex RIS Cite

ON CURVES OF CONSTANT BREADTH IN G13

Year 2016, Volume: 6 Issue: 1, 64 - 69, 01.06.2016

Abstract

In this work, di erential equations characterizing curves of constant breadth have been given in pseudo-Galilean space G13 : The special cases related to these di erential equations have been studied in G13.

References

  • [1] Akdogan,Z. and Ma˘gden,A., (2001), Some characterizations of curves of constant breadth in En space, Turk. J. Math., 25, pp. 433-444.
  • [2] Ball,N.H., (1930), On ovals, Amer. Math. Month., 27, pp. 348-353.
  • [3] Blaschke,W., (1915), Konvexe bereiche gegebener konstanter breite und kleinsten inhalts, Math. Ann., 76, pp. 504-513.
  • [4] Divjak,B., (1998), Curves in pseudo-Galilean geometry. Annales Univ. Budapest, 41, pp. 117-128.
  • [5] Erjavec,Z. and Divjak,B., (2008), The equiform differential geometry of curves in the pseudo-Galilean space, Math. Comm.,13, pp. 321-332.
  • [6] Euler,L., (1780), De curvis triangularibus, Acta Acad. Prtropol., 1778, pp. 3-30.
  • [7] Fujivara,M., (1914), On space curves of constant breadth. Tohoku Math. J., 5, pp. 179-184.
  • [8] K¨ose,O., (1984), Some properties of ovals and curves of constant width in a plane. Do˘ga Math., ¨ 8:119-126.
  • [9] K¨ose,O., (1986), On space curves of constant breadth. Do˘ga Math., 10:11-14. ¨
  • [10] Ma˘gden,A. and K¨ose,O., (1997), On the curves of constant breadth in ¨ E 4 space. Turk. J. Math., 21, pp. 227-284.
  • [11] Reuleaux,F., (1963), The Kinematics of Machinery, trans. A. Kennedy, Dover, New York (reprint of 1876 translation of 1875 German original).
  • [12] Yılmaz,S., Savci,U.Z. and Turgut,M., (2014), Characterizations of curves of constant breadth in ¨ Galilean 3-space G 3, J. of Adv. Res. Pure Math., 6 (1), pp. 19-24
Year 2016, Volume: 6 Issue: 1, 64 - 69, 01.06.2016

Abstract

References

  • [1] Akdogan,Z. and Ma˘gden,A., (2001), Some characterizations of curves of constant breadth in En space, Turk. J. Math., 25, pp. 433-444.
  • [2] Ball,N.H., (1930), On ovals, Amer. Math. Month., 27, pp. 348-353.
  • [3] Blaschke,W., (1915), Konvexe bereiche gegebener konstanter breite und kleinsten inhalts, Math. Ann., 76, pp. 504-513.
  • [4] Divjak,B., (1998), Curves in pseudo-Galilean geometry. Annales Univ. Budapest, 41, pp. 117-128.
  • [5] Erjavec,Z. and Divjak,B., (2008), The equiform differential geometry of curves in the pseudo-Galilean space, Math. Comm.,13, pp. 321-332.
  • [6] Euler,L., (1780), De curvis triangularibus, Acta Acad. Prtropol., 1778, pp. 3-30.
  • [7] Fujivara,M., (1914), On space curves of constant breadth. Tohoku Math. J., 5, pp. 179-184.
  • [8] K¨ose,O., (1984), Some properties of ovals and curves of constant width in a plane. Do˘ga Math., ¨ 8:119-126.
  • [9] K¨ose,O., (1986), On space curves of constant breadth. Do˘ga Math., 10:11-14. ¨
  • [10] Ma˘gden,A. and K¨ose,O., (1997), On the curves of constant breadth in ¨ E 4 space. Turk. J. Math., 21, pp. 227-284.
  • [11] Reuleaux,F., (1963), The Kinematics of Machinery, trans. A. Kennedy, Dover, New York (reprint of 1876 translation of 1875 German original).
  • [12] Yılmaz,S., Savci,U.Z. and Turgut,M., (2014), Characterizations of curves of constant breadth in ¨ Galilean 3-space G 3, J. of Adv. Res. Pure Math., 6 (1), pp. 19-24
There are 12 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Y. Ünlütürk This is me

M. Dede This is me

Ü. Z. Savcı This is me

C. Ekici This is me

Publication Date June 1, 2016
Published in Issue Year 2016 Volume: 6 Issue: 1

Cite