BibTex RIS Cite
Year 2015, Volume: 5 Issue: 2, 231 - 248, 01.12.2015

Abstract

References

  • Abdlhusein,M. A., (2009), The q-Operators and Rogers-Szeg¨o polynomials, M.SC. Thesis, University of Basrah, Basrah, Iraq.
  • Abdlhusein,M. A., (2012), The basic and extended identities for certain q-polynomials, J. College of education for pure sciences-Thiqar university, 2, pp. 11-23.
  • Abdlhusein,M. A., (2013), Representation of some q-series by the q-exponential operator R(bDq), J.
  • Missan researches, 18, pp. 355-362. Abdlhusein,M. A., (2014), The Euler operator for basic hypergeometric series, Int. J. Adv. Appl. Math. and Mech.,2, pp. 42 - 52.
  • Abdlhusein,M. A., (2015), The new application of the Cauchy operator, J. Zankoy Sulaimani (JZS-A), , pp. 193-204.
  • Askey,R. and Ismail,M. E. H., (1983), A generalization of ultraspherical polynomials, In:“Studies in
  • Pure Mathematics”, P. Erd¨os, Ed., Birkh¨auser, Boston, MA, pp. 55-78. Carlitz,L. and Al-Salam,W. A., (1965), Some orthogonal q-polynomials, Math. Nachr.,30, pp. 47-61.
  • Carlitz,L., (1972), Generating functions for certain q-orthogonal polynomials, Collectanea Math.,23, pp. 91-104.
  • Cao,J., (2012), Generalizations of certain Carlitz’s trilinear and Srivastava-Agarwal type generating functions, J. Math. Anal. Appl.,396, pp. 351-362.
  • Cao,J., (2012), On Carlitz’s trilinear generating functions, Applied Mathematics and Computa- tion,218, pp. 9839-9847.
  • Chen,V.Y.B. and Gu,N.S.S., (2008), The Cauchy operator for basic hypergeometric series, Adv. Appl. Math.,41, pp. 177-196.
  • Chen,W.Y.C. and Liu,Z.G., (1997), Parameter augmenting for basic hypergeometric series, II, J.
  • Combin. Theory, Ser. A,80, pp. 175-195. Chen,W.Y.C. and Liu,Z.G., (1998), Parameter augmentation for basic hypergeometric series, I, Math- ematical Essays in Honor of Gian-Carlo Rota, Eds., B. E. Sagan and R. P. Stanley, Birkh¨auser, Boston, pp. 111-129.
  • Chen,W. Y. C., Saad,H. L. and Sun,L. H., (2007), The bivariate Rogers-Szeg¨o polynomials, J. Phys. A: Math. Theor.,40, pp. 6071-6084.
  • Chen,W. Y. C., Saad,H. L. and Sun,L. H., (2010), An operator approach to the Al-Salam-Carlitz polynomials, J. Math. Phys.,51, pp. 1-13.
  • Cigler,J., (1982), Elementare q-identit¨aten, Publication de L’institute de recherche Math´ematique avanc´ee, pp. 23-57.
  • D´esarm´enien,J., (1982), Les q-analogues des polynˆomes d’Hermite, S´em, Lothar. Combin.,B06b, pp.
  • Gasper,G. and Rahman,M., (2004), Basic Hypergeometric Series, 2nd Ed., Cambridge University Press, Cambridge, MA.
  • Jackson,F. H., (1910), On q-definite integrals, Quart. J. Pure Appl. Math.,50, pp. 101-112.
  • Lu,D.-q., (2009), q-Difference equation and the Cauchy operator identities, J. Math. Anal. Appl.,359, pp. 265-274.
  • Saad,H. L. and Abdlhusein,M. A., (2014), The q-exponential operator and generalized Rogers-Szeg¨o polynomials, J. Advances in Mathematics,8, pp. 1440-1455.
  • Saad,H. L. and Sukhi,A. A., (2010), Another homogeneous q-difference operator, J. Applied Mathe- matics and Computation,215, pp. 332-4339.
  • Wang,M., (2009), q-Integral Representation for the Al-Salam-Carlitz Polynomials, J. Applied Math- ematics Letters,22, pp. 943-945.
  • Wang,M., (2012), An Identity from the Al-Salam-Carlitz Polynomials, J. Mathematica Aeterna,2, pp. 187.

The Generalized Hahn Polynomials

Year 2015, Volume: 5 Issue: 2, 231 - 248, 01.12.2015

Abstract

In this paper, we represent the generalized Hahn polynomials ϕ a n x, y by the Cauchy operator for deriving its identities: generating function, Mehler’s formula, Rogers formula with some of its applications , Rogers-type formula, extended generating function, extended Mehler’s formula, extended Rogers formula and another extended identities. Also, the Rogers-type formula for the bivariate generalized classical Rogers-Szeg¨o polynomials will be given by two methods. Then we give the q-integral representation for the generalized Hahn polynomials, bivariate Rogers-Szeg¨o polynomials, and the generalized Rogers-Szeg¨o polynomials.

References

  • Abdlhusein,M. A., (2009), The q-Operators and Rogers-Szeg¨o polynomials, M.SC. Thesis, University of Basrah, Basrah, Iraq.
  • Abdlhusein,M. A., (2012), The basic and extended identities for certain q-polynomials, J. College of education for pure sciences-Thiqar university, 2, pp. 11-23.
  • Abdlhusein,M. A., (2013), Representation of some q-series by the q-exponential operator R(bDq), J.
  • Missan researches, 18, pp. 355-362. Abdlhusein,M. A., (2014), The Euler operator for basic hypergeometric series, Int. J. Adv. Appl. Math. and Mech.,2, pp. 42 - 52.
  • Abdlhusein,M. A., (2015), The new application of the Cauchy operator, J. Zankoy Sulaimani (JZS-A), , pp. 193-204.
  • Askey,R. and Ismail,M. E. H., (1983), A generalization of ultraspherical polynomials, In:“Studies in
  • Pure Mathematics”, P. Erd¨os, Ed., Birkh¨auser, Boston, MA, pp. 55-78. Carlitz,L. and Al-Salam,W. A., (1965), Some orthogonal q-polynomials, Math. Nachr.,30, pp. 47-61.
  • Carlitz,L., (1972), Generating functions for certain q-orthogonal polynomials, Collectanea Math.,23, pp. 91-104.
  • Cao,J., (2012), Generalizations of certain Carlitz’s trilinear and Srivastava-Agarwal type generating functions, J. Math. Anal. Appl.,396, pp. 351-362.
  • Cao,J., (2012), On Carlitz’s trilinear generating functions, Applied Mathematics and Computa- tion,218, pp. 9839-9847.
  • Chen,V.Y.B. and Gu,N.S.S., (2008), The Cauchy operator for basic hypergeometric series, Adv. Appl. Math.,41, pp. 177-196.
  • Chen,W.Y.C. and Liu,Z.G., (1997), Parameter augmenting for basic hypergeometric series, II, J.
  • Combin. Theory, Ser. A,80, pp. 175-195. Chen,W.Y.C. and Liu,Z.G., (1998), Parameter augmentation for basic hypergeometric series, I, Math- ematical Essays in Honor of Gian-Carlo Rota, Eds., B. E. Sagan and R. P. Stanley, Birkh¨auser, Boston, pp. 111-129.
  • Chen,W. Y. C., Saad,H. L. and Sun,L. H., (2007), The bivariate Rogers-Szeg¨o polynomials, J. Phys. A: Math. Theor.,40, pp. 6071-6084.
  • Chen,W. Y. C., Saad,H. L. and Sun,L. H., (2010), An operator approach to the Al-Salam-Carlitz polynomials, J. Math. Phys.,51, pp. 1-13.
  • Cigler,J., (1982), Elementare q-identit¨aten, Publication de L’institute de recherche Math´ematique avanc´ee, pp. 23-57.
  • D´esarm´enien,J., (1982), Les q-analogues des polynˆomes d’Hermite, S´em, Lothar. Combin.,B06b, pp.
  • Gasper,G. and Rahman,M., (2004), Basic Hypergeometric Series, 2nd Ed., Cambridge University Press, Cambridge, MA.
  • Jackson,F. H., (1910), On q-definite integrals, Quart. J. Pure Appl. Math.,50, pp. 101-112.
  • Lu,D.-q., (2009), q-Difference equation and the Cauchy operator identities, J. Math. Anal. Appl.,359, pp. 265-274.
  • Saad,H. L. and Abdlhusein,M. A., (2014), The q-exponential operator and generalized Rogers-Szeg¨o polynomials, J. Advances in Mathematics,8, pp. 1440-1455.
  • Saad,H. L. and Sukhi,A. A., (2010), Another homogeneous q-difference operator, J. Applied Mathe- matics and Computation,215, pp. 332-4339.
  • Wang,M., (2009), q-Integral Representation for the Al-Salam-Carlitz Polynomials, J. Applied Math- ematics Letters,22, pp. 943-945.
  • Wang,M., (2012), An Identity from the Al-Salam-Carlitz Polynomials, J. Mathematica Aeterna,2, pp. 187.
There are 24 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Mohammed A Abdlhuseın This is me

Publication Date December 1, 2015
Published in Issue Year 2015 Volume: 5 Issue: 2

Cite