BibTex RIS Cite

On Generalized Phi-Recurrent Kenmotsu Manifolds

Year 2015, Volume: 5 Issue: 1, 1 - 9, 01.06.2015

Abstract

The aim of the present paper is to study the properties of generalized ϕ−recurrent and concircular ϕ−recurrent Kenmotsu manifolds

References

  • Sasaki, S., (1965, 1967, 1968), Almost contact manifolds, I, II, III, A Lecture note, Tohoku University.
  • Takahashi, T., (1977), Sasakian ϕ−symmetric spaces, Tohoku Math. J., 29, pp. 91-113.
  • De, U. C. and Pathak, G., (2004), On 3−dimensional Kenmotsu manifolds, Indian J. pure Appl. Math., 35, pp. 159-165.
  • Kenmotsu, K., (1972), A class of almost contact Riemannian manifolds, Tohoku Math. J., 24, pp. 103.
  • De, U. C. and Guha, N., (1991) , On generalized recurrent manifolds, Proceedings of the Mathematical Society, 7, pp. 7-11.
  • Chen, B. Y., (1973), Geometry of submanifolds, M. Dekker Inc., New York.
  • Yano, K., (1944), On the torseforming direction in Riemannian spaces, Proc. Imp. Acad. Tokyo, 20, pp. 340-345.
  • Chaubey, S. K., (2013), On generalized ϕ−recurrent trans-Sasakian manifolds, (to appear).
  • Patil, D. A., Prakasha, D. G. and Bagewadi, C. S., (2009), On generalized ϕ−recurrent Sasakian manifolds, Bull. of Math. Anal. and Appl., 1 (3), pp. 42-48.
  • Jaiswal, J. P. and Ojha, R. H., (2009) , On generalized ϕ−recurrent LP-Sasakian manifolds, Kyung- pook Math. J., 49, pp. 779-788.
  • Venkatesha and Bagewadi, C. S., (2005), On 3−dimensional trans-Sasakian manifolds, AMSE, 42(5), pp. 63-73.
  • Kobayashi, K. and Nomizu, K., (1963), Foundations of Differential Geometry, I, II, Wiley-Interscience, New York.
  • Sinha, B. B. and Srivastava, A. K., (1991), Curvatures on Kenmotsu manifold, Indian J. Pure Appl. Math., 22, (1), pp. 23-28.
  • Jun, J. B., De, U. C. and Pathak, G., (2005), On Kenmotsu manifolds, J. Korean Math. Soc., 42, pp. 445.
  • De, U. C., Yildiz, A. and Yaliniz, Funda, (2008), On ϕ−recurrent Kenmotsu manifolds, Turk J. Math., , pp. 1-12.
  • Sasaki, S. and Hatakeyama, Y., (1961), On differentiable manifolds with certain structures which are closely related to almost contact structure, Tohoku Math. J., 13, pp. 281-294.
  • Chaubey, S. K. and Ojha, R. H., (2010), On m-projective curvature tensor of a Kenmotsu manifold, Diff. Geom. Dyn. Sys., 12, pp. 52-60.
  • De, U. C., (2008), On ϕ−symmetric Kenmotsu manifolds, International Electronic J. of Geom., 1 (1), pp. 33-38.
  • Cihan, ¨O . and De, U. C., (2006), On the quasi-conformal curvature tensor of a Kenmotsu manifolds
  • Mathematica Pannonica, 17/2, pp. 221-228. Basari, A. and Murathan, C., (2008), On generalized ϕ−recurrent Kenmotsu manifolds, Fen Derg. (1), pp. 91-97.
  • De, U. C. and Guha, N., (1991), On generalized recurrent manifolds, J. Nat. Acad. Math. India, 9, pp. 85-92.
  • Cihan, ¨O ., (2007), On generalized recurrent Kenmotsu manifolds, Word Applied Sci. J., 2(1), pp. 33.
Year 2015, Volume: 5 Issue: 1, 1 - 9, 01.06.2015

Abstract

References

  • Sasaki, S., (1965, 1967, 1968), Almost contact manifolds, I, II, III, A Lecture note, Tohoku University.
  • Takahashi, T., (1977), Sasakian ϕ−symmetric spaces, Tohoku Math. J., 29, pp. 91-113.
  • De, U. C. and Pathak, G., (2004), On 3−dimensional Kenmotsu manifolds, Indian J. pure Appl. Math., 35, pp. 159-165.
  • Kenmotsu, K., (1972), A class of almost contact Riemannian manifolds, Tohoku Math. J., 24, pp. 103.
  • De, U. C. and Guha, N., (1991) , On generalized recurrent manifolds, Proceedings of the Mathematical Society, 7, pp. 7-11.
  • Chen, B. Y., (1973), Geometry of submanifolds, M. Dekker Inc., New York.
  • Yano, K., (1944), On the torseforming direction in Riemannian spaces, Proc. Imp. Acad. Tokyo, 20, pp. 340-345.
  • Chaubey, S. K., (2013), On generalized ϕ−recurrent trans-Sasakian manifolds, (to appear).
  • Patil, D. A., Prakasha, D. G. and Bagewadi, C. S., (2009), On generalized ϕ−recurrent Sasakian manifolds, Bull. of Math. Anal. and Appl., 1 (3), pp. 42-48.
  • Jaiswal, J. P. and Ojha, R. H., (2009) , On generalized ϕ−recurrent LP-Sasakian manifolds, Kyung- pook Math. J., 49, pp. 779-788.
  • Venkatesha and Bagewadi, C. S., (2005), On 3−dimensional trans-Sasakian manifolds, AMSE, 42(5), pp. 63-73.
  • Kobayashi, K. and Nomizu, K., (1963), Foundations of Differential Geometry, I, II, Wiley-Interscience, New York.
  • Sinha, B. B. and Srivastava, A. K., (1991), Curvatures on Kenmotsu manifold, Indian J. Pure Appl. Math., 22, (1), pp. 23-28.
  • Jun, J. B., De, U. C. and Pathak, G., (2005), On Kenmotsu manifolds, J. Korean Math. Soc., 42, pp. 445.
  • De, U. C., Yildiz, A. and Yaliniz, Funda, (2008), On ϕ−recurrent Kenmotsu manifolds, Turk J. Math., , pp. 1-12.
  • Sasaki, S. and Hatakeyama, Y., (1961), On differentiable manifolds with certain structures which are closely related to almost contact structure, Tohoku Math. J., 13, pp. 281-294.
  • Chaubey, S. K. and Ojha, R. H., (2010), On m-projective curvature tensor of a Kenmotsu manifold, Diff. Geom. Dyn. Sys., 12, pp. 52-60.
  • De, U. C., (2008), On ϕ−symmetric Kenmotsu manifolds, International Electronic J. of Geom., 1 (1), pp. 33-38.
  • Cihan, ¨O . and De, U. C., (2006), On the quasi-conformal curvature tensor of a Kenmotsu manifolds
  • Mathematica Pannonica, 17/2, pp. 221-228. Basari, A. and Murathan, C., (2008), On generalized ϕ−recurrent Kenmotsu manifolds, Fen Derg. (1), pp. 91-97.
  • De, U. C. and Guha, N., (1991), On generalized recurrent manifolds, J. Nat. Acad. Math. India, 9, pp. 85-92.
  • Cihan, ¨O ., (2007), On generalized recurrent Kenmotsu manifolds, Word Applied Sci. J., 2(1), pp. 33.
There are 22 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

S. K. Chaubey This is me

C. S. Prasad This is me

Publication Date June 1, 2015
Published in Issue Year 2015 Volume: 5 Issue: 1

Cite