BibTex RIS Cite

BOUNDS FOR INITIAL MACLAURIN COEFFICIENTS FOR A NEW SUBCLASSES OF ANALYTIC AND M-FOLD SYMMETRIC BI-UNIVALENT FUNCTIONS

Year 2020, Volume: 10 Issue: 2, 305 - 311, 01.03.2020

Abstract

In the present paper, we introduce and study two new subclasses of the function class Σm consisting of analytic and m-fold symmetric bi-univalent functions in the open unit disk U. We establish upper bounds for the initial coefficients |am+1| and |a2m+1| for functions in these subclasses. Certain special cases are also indicated.

References

  • Altinkaya, S. and Yal¸cin, S., (2015), Coefficient bounds for certain subclasses of m-fold symmetric bi-univalent functions, Journal of Mathematics, Art. ID 241683, pp. 1-5.
  • Altinkaya, S. and Yal¸cin, S., (2018), On some subclasses of m-fold symmetric bi-univalent functions
  • Commun. Fac. Sci. Univ. Ank. Series A1, 67 (1), pp. 29-36. Caglar, M., Deniz, E. and Srivastava, H. M., (2017) Second Hankel determinant for certain subclasses of bi-univalent functions, Turkish J. Math., 41, pp. 694-706.
  • Duren, P. L., (1983), Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band , Springer Verlag, New York, Berlin, Heidelberg and Tokyo.
  • Eker, S. S., (2016), Coefficient bounds for subclasses of m-fold symmetric bi-univalent functions, Turk. J. Math., 40, pp. 641-646.
  • Frasin, B. A. and Aouf, M. K., (2011), New subclasses of bi-univalent functions, Appl. Math. Lett., , pp. 1569–1573.
  • Goyal, S. P. and Goswami, P., (2012), Estimate for initial Maclaurin coefficients of bi-univalent func- tions for a class defined by fractional derivatives, J. Egyptian Math. Soc., 20, pp. 179-182.
  • Koepf, W., (1989), Coefficients of symmetric functions of bounded boundary rotations, Proc. Amer. Math. Soc., 105, pp. 324-329.
  • Li, X. F. and Wang, A. P., (2012), Tow new subclasses of bi-univalent functions, Int. Math. Forum, , pp. 1495-1504.
  • Murugusundaramoorthy, G., Selvaraj, C. and Babu, O. S., (2015), Coefficient estimates for pascu-type subclasses of bi-univalent functions based on subordination, International Journal of Nonliner Science, (1), pp. 47-52.
  • Srivastava, H. M. and Bansal, D., (2015), Coefficient estimates for a subclass of analytic and bi- univalent functions, J. Egyptian Math. Soc., 23, pp. 242–246.
  • Srivastava, H. M., Bulut, S., Caglar, M. and Yagmur, N., (2013), Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat, 27 (5), pp. 831–842.
  • Srivastava, H. M., Eker, S. S. and Ali, R. M., (2015), Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat, 29, pp. 1839–1845.
  • Srivastava, H. M., Eker, S. S., Hamidi, S. G., Jahangiri, J. M., (2018), Faber polynomial coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator, Bull.
  • Iranian Math. Soc., 44 (1), pp. 149-157. Srivastava, H. M., Gaboury, S. and Ghanim, F., (2016), Initial coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, Acta Math. Sci. Ser. B Engl. Ed., 36, pp. 863-871.
  • Srivastava, H. M., Gaboury, S. and Ghanim, F., (2017), Coefficient estimates for some general sub- classes of analytic and bi-univalent functions, Africa Math., 28, pp. 693-706.
  • Srivastava, H. M., Mishra, A. K. and Gochhayat, P., (2010), Certain subclasses of analytic and bi- univalent functions, Appl. Math. Lett., 23, pp. 1188–1192.
  • Srivastava, H. M., Sivasubramanian, S. and Sivakumar, R., (2014), Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions, Tbilisi Math. J., 7 (2), pp. 1-10.
  • Tang, H., Srivastava, H. M., Sivasubramanian, S. and Gurusamy, P., (2016), The Fekete-Szeg¨o func- tional problems for some subclasses of m-fold symmetric bi-univalent functions, J. Math. Inequal., 10, pp. 1063-1092.
  • Wanas, A. K. and Majeed, A. H., (2018), Certain new subclasses of analytic and m-fold symmetric bi-univalent functions, Applied Mathematics E-Notes, 18, pp. 178-188.
Year 2020, Volume: 10 Issue: 2, 305 - 311, 01.03.2020

Abstract

References

  • Altinkaya, S. and Yal¸cin, S., (2015), Coefficient bounds for certain subclasses of m-fold symmetric bi-univalent functions, Journal of Mathematics, Art. ID 241683, pp. 1-5.
  • Altinkaya, S. and Yal¸cin, S., (2018), On some subclasses of m-fold symmetric bi-univalent functions
  • Commun. Fac. Sci. Univ. Ank. Series A1, 67 (1), pp. 29-36. Caglar, M., Deniz, E. and Srivastava, H. M., (2017) Second Hankel determinant for certain subclasses of bi-univalent functions, Turkish J. Math., 41, pp. 694-706.
  • Duren, P. L., (1983), Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band , Springer Verlag, New York, Berlin, Heidelberg and Tokyo.
  • Eker, S. S., (2016), Coefficient bounds for subclasses of m-fold symmetric bi-univalent functions, Turk. J. Math., 40, pp. 641-646.
  • Frasin, B. A. and Aouf, M. K., (2011), New subclasses of bi-univalent functions, Appl. Math. Lett., , pp. 1569–1573.
  • Goyal, S. P. and Goswami, P., (2012), Estimate for initial Maclaurin coefficients of bi-univalent func- tions for a class defined by fractional derivatives, J. Egyptian Math. Soc., 20, pp. 179-182.
  • Koepf, W., (1989), Coefficients of symmetric functions of bounded boundary rotations, Proc. Amer. Math. Soc., 105, pp. 324-329.
  • Li, X. F. and Wang, A. P., (2012), Tow new subclasses of bi-univalent functions, Int. Math. Forum, , pp. 1495-1504.
  • Murugusundaramoorthy, G., Selvaraj, C. and Babu, O. S., (2015), Coefficient estimates for pascu-type subclasses of bi-univalent functions based on subordination, International Journal of Nonliner Science, (1), pp. 47-52.
  • Srivastava, H. M. and Bansal, D., (2015), Coefficient estimates for a subclass of analytic and bi- univalent functions, J. Egyptian Math. Soc., 23, pp. 242–246.
  • Srivastava, H. M., Bulut, S., Caglar, M. and Yagmur, N., (2013), Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat, 27 (5), pp. 831–842.
  • Srivastava, H. M., Eker, S. S. and Ali, R. M., (2015), Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat, 29, pp. 1839–1845.
  • Srivastava, H. M., Eker, S. S., Hamidi, S. G., Jahangiri, J. M., (2018), Faber polynomial coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator, Bull.
  • Iranian Math. Soc., 44 (1), pp. 149-157. Srivastava, H. M., Gaboury, S. and Ghanim, F., (2016), Initial coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, Acta Math. Sci. Ser. B Engl. Ed., 36, pp. 863-871.
  • Srivastava, H. M., Gaboury, S. and Ghanim, F., (2017), Coefficient estimates for some general sub- classes of analytic and bi-univalent functions, Africa Math., 28, pp. 693-706.
  • Srivastava, H. M., Mishra, A. K. and Gochhayat, P., (2010), Certain subclasses of analytic and bi- univalent functions, Appl. Math. Lett., 23, pp. 1188–1192.
  • Srivastava, H. M., Sivasubramanian, S. and Sivakumar, R., (2014), Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions, Tbilisi Math. J., 7 (2), pp. 1-10.
  • Tang, H., Srivastava, H. M., Sivasubramanian, S. and Gurusamy, P., (2016), The Fekete-Szeg¨o func- tional problems for some subclasses of m-fold symmetric bi-univalent functions, J. Math. Inequal., 10, pp. 1063-1092.
  • Wanas, A. K. and Majeed, A. H., (2018), Certain new subclasses of analytic and m-fold symmetric bi-univalent functions, Applied Mathematics E-Notes, 18, pp. 178-188.
There are 20 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

A. K. Wanas This is me

Publication Date March 1, 2020
Published in Issue Year 2020 Volume: 10 Issue: 2

Cite