BibTex RIS Cite

PERIODIC AND SEMI-PERIODIC EIGENVALUES OF HILL'S EQUATION WITH SYMMETRIC DOUBLE WELL POTENTIAL

Year 2020, Volume: 10 Issue: 2, 1 - 7, 01.03.2020

Abstract

In this paper, some estimates are derived explicitly for periodic and semiperiodic eigenvalues of Hill’ s equation with symmetric double well potentials. Also, lengths of the instability intervals are obtained and bounds for the gaps of Dirichlet and Neumann eigenvalues are given by using an auxiliary eigenvalue problem.

References

  • Hochstadt, H., (1965), On the determination of a Hill’s equation from its spectrum, Arch. Ration. Mech. Anal.,19, pp. 353-362.
  • Eastham, M. S. P., (1973), The spectral theory of periodic differential equations, Scottish Academic Press, Edinburgh and London.
  • Ntinos, A., (1976), Lengths of instability intervals of second order periodic differential equations, Q. J. Math.,27, pp. 387-394.
  • Haaser, N. B. and Sullivan, J. A., (1991), Real Analysis, Van Nostrand Reinhold Co., New York.
  • Huang, M. J., (1997), The first instability interval for Hill equations with symmetric single well potentials, Proc. Amer. Math. Soc., 125, pp. 775-778.
  • Co¸skun, H. and Harris, B. J., (2000), Estimates for the periodic and semi-periodic eigenvalues of Hill’s equations, Proc. Roy. Soc. Edinburgh Sec. A, 130, pp. 991-998.
  • Co¸skun, H., (2002), Some inverse results for Hill’ s Equation, J. Math. Anal. Appl., 276, pp. 833-844.
  • Co¸skun, H., (2003), On the spectrum of a second order periodic differential equation, Rocky Mountain J. Math., 33, pp. 1261-1277.
  • Huang M. J. and Tsai T. M., (2009), The eigenvalue gap for one-dimensional Schrodinger operators with symmetric potentials, Proc. Roy. Soc. Edinburgh Sec. A, 139, pp. 359-366.
Year 2020, Volume: 10 Issue: 2, 1 - 7, 01.03.2020

Abstract

References

  • Hochstadt, H., (1965), On the determination of a Hill’s equation from its spectrum, Arch. Ration. Mech. Anal.,19, pp. 353-362.
  • Eastham, M. S. P., (1973), The spectral theory of periodic differential equations, Scottish Academic Press, Edinburgh and London.
  • Ntinos, A., (1976), Lengths of instability intervals of second order periodic differential equations, Q. J. Math.,27, pp. 387-394.
  • Haaser, N. B. and Sullivan, J. A., (1991), Real Analysis, Van Nostrand Reinhold Co., New York.
  • Huang, M. J., (1997), The first instability interval for Hill equations with symmetric single well potentials, Proc. Amer. Math. Soc., 125, pp. 775-778.
  • Co¸skun, H. and Harris, B. J., (2000), Estimates for the periodic and semi-periodic eigenvalues of Hill’s equations, Proc. Roy. Soc. Edinburgh Sec. A, 130, pp. 991-998.
  • Co¸skun, H., (2002), Some inverse results for Hill’ s Equation, J. Math. Anal. Appl., 276, pp. 833-844.
  • Co¸skun, H., (2003), On the spectrum of a second order periodic differential equation, Rocky Mountain J. Math., 33, pp. 1261-1277.
  • Huang M. J. and Tsai T. M., (2009), The eigenvalue gap for one-dimensional Schrodinger operators with symmetric potentials, Proc. Roy. Soc. Edinburgh Sec. A, 139, pp. 359-366.
There are 9 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

E. Başkaya This is me

Publication Date March 1, 2020
Published in Issue Year 2020 Volume: 10 Issue: 2

Cite