BibTex RIS Cite

SEIDEL BORDERENERGETIC GRAPHS

Year 2020, Volume: 10 Issue: 2, 389 - 399, 01.03.2020

Abstract

A graph G of order n is said to be Seidel borderenergetic if its Seidel energy equals the Seidel energy of the complete graph Kn. Let G be graph on n vertices with two distinct Seidel eigenvalues. In this paper, we prove that G is Seidel borderenergetic if and only if G ∼= Kn or G ∼= Kn or G ∼= Ki ∪ Kj or G ∼= Ki,j , where i + j = n. We also, show that if G is a connected k-regular graph on n ≥ 3 vertices with three distinct eigenvalues, then G is Seidel borderenergetic if and only if G ∼= K n 2 , n 2 where n is even. Finally, we determine all Seidel borderenergetic graphs with at most 10 vertices.

References

  • Beineke, L. W., Wilson, R. and Cameron, P. J., (2004), Topics in Algebraic Graph Theory, New York
  • Cambridge University Press. Brouwer, A. E., Haemers, W. H., (2012), Spectra of Graphs, Universitext, Springer, New York.
  • Cvetkovi´c, D., Doob, M. andSachs, H., (1980) Spectra of Graphs-Theory and Application, Academic Press, New York.
  • Figure 4. Seidel borderenergetic graphs of order 6. Figure 5. Seidel borderenergetic graphs of order 7. Deng, B., Li, X. and Gutman, I., (2016), More on borderenergetic graphs, Linear Algebra Appl., 497, pp. 199-208.
  • Deng, B. and Li, X., (2017), More on L-Borderenergetic Graphs, MATCH Commun. Math. Comput. Chem. 77, pp. 115-127.
  • Furtula, B. and Gutman, I., (2017), Borderenergetic Graphs of Order 12, Iranian J. Math. Chem., 8 (4), pp. 339-343
  • GNU MPFR Library, http://www.mpfr.org/mpfr-current/mpfr.html. Greaves, G., Koolen, J. H., Munemasa, A. and Sz¨oll˝osi, F., (2016), Equiangular lines in Euclidean spaces, J. Combin. Theory Ser. A, 138, pp. 208-235.
  • Gong, S., Li, X., Xu, G., Gutman, I. and Furtula, B. (2015), Borderenergetic graphs, MATCH
  • Commun. Math. Comput. Chem., 74, pp. 321-332. Gutman, I., (1978), The energy of a graph, Ber. Math-Statist. Sekt. Forschungszentrum Graz, 103, pp. 1-22.
  • Figure 6. Seidel borderenergetic graphs of order 8. Gutman, I. and Zhou, B., (2006), Laplacian energy of a graph, Linear Algebra Appl., 414, pp. 29-37.
  • Haemers, W. H., (2012), Seidel switching and graph energy, MATCH Commun. Math. Comput. Chem., 68, pp. 653-659.
  • Hakimi-Nezhaad, M., (2017), On borderenergetic and L-borderenergetic graphs, J. Math. Nanosci., 7 (1-2), pp. 71-77.
  • Hakimi-Nezhaad, M. and Ghorbani, M., Laplacian Borderenergetic graphs, J. Inf. Optim. Sci., DOI : 1080/02522667.2018.1480468.
  • Hou, Y. and Tao, Q., (2016), Borderenergetic threshold graphs, MATCH Commun. Math. Comput. Chem., 75, pp. 253-262.
  • Li, X., Shi, Y. and Gutman, I., (2012) Graph energy, Springer, New York.
  • Li, X., Wei, M. and Gong, S., (2015), A computer search for the borderenergetic graphs of order 10
  • MATCH Commun. Math. Comput. Chem., 74, pp. 333-342. Li, X., Wei, M. and Zhu, M., (2016), Borderenergetic graphs with small maximum or large minimum degrees, MATCH Commun. Math. Comput. Chem., 77, pp. 25-36.
  • McKay, B. D., (2006), nauty User’s Guide, (version 2.2), Technical Report TR-CS-90-02, Computer
  • Science Department, Australian National University, available at http://cs.anu.edu.au/people/bdm/. Ramane, H. S., Gundloor, M. M. and Hosamani, S. M., (2016), Seidel equienergetic graphs, Bulletin of Mathematical Sciences and Applications, 16, pp. 62-69.
  • Roman, S., (1992), Advanced Linear Algebra, Graduate Texts in Mathematics, vol. 135. Springer, New York.
  • Shao, Z. and Deng, F., (2016), Correcting the number of borderenergetic graphs of order 10, MATCH
  • Commun. Math. Comput. Chem., 75, pp. 263-266. Tura, F., (2017), L-borderenergetic graphs, MATCH Commun. Math. Comput. Chem., 77, pp. 37-44.
  • Figure 7. Seidel borderenergetic graphs of order 9. Figure 8. Seidel borderenergetic graphs of order 10. van Lint, J. H. and Seidel, J. J., (1966), Equilateral point sets in elliptic geometry, Nederl. Akad.
Year 2020, Volume: 10 Issue: 2, 389 - 399, 01.03.2020

Abstract

References

  • Beineke, L. W., Wilson, R. and Cameron, P. J., (2004), Topics in Algebraic Graph Theory, New York
  • Cambridge University Press. Brouwer, A. E., Haemers, W. H., (2012), Spectra of Graphs, Universitext, Springer, New York.
  • Cvetkovi´c, D., Doob, M. andSachs, H., (1980) Spectra of Graphs-Theory and Application, Academic Press, New York.
  • Figure 4. Seidel borderenergetic graphs of order 6. Figure 5. Seidel borderenergetic graphs of order 7. Deng, B., Li, X. and Gutman, I., (2016), More on borderenergetic graphs, Linear Algebra Appl., 497, pp. 199-208.
  • Deng, B. and Li, X., (2017), More on L-Borderenergetic Graphs, MATCH Commun. Math. Comput. Chem. 77, pp. 115-127.
  • Furtula, B. and Gutman, I., (2017), Borderenergetic Graphs of Order 12, Iranian J. Math. Chem., 8 (4), pp. 339-343
  • GNU MPFR Library, http://www.mpfr.org/mpfr-current/mpfr.html. Greaves, G., Koolen, J. H., Munemasa, A. and Sz¨oll˝osi, F., (2016), Equiangular lines in Euclidean spaces, J. Combin. Theory Ser. A, 138, pp. 208-235.
  • Gong, S., Li, X., Xu, G., Gutman, I. and Furtula, B. (2015), Borderenergetic graphs, MATCH
  • Commun. Math. Comput. Chem., 74, pp. 321-332. Gutman, I., (1978), The energy of a graph, Ber. Math-Statist. Sekt. Forschungszentrum Graz, 103, pp. 1-22.
  • Figure 6. Seidel borderenergetic graphs of order 8. Gutman, I. and Zhou, B., (2006), Laplacian energy of a graph, Linear Algebra Appl., 414, pp. 29-37.
  • Haemers, W. H., (2012), Seidel switching and graph energy, MATCH Commun. Math. Comput. Chem., 68, pp. 653-659.
  • Hakimi-Nezhaad, M., (2017), On borderenergetic and L-borderenergetic graphs, J. Math. Nanosci., 7 (1-2), pp. 71-77.
  • Hakimi-Nezhaad, M. and Ghorbani, M., Laplacian Borderenergetic graphs, J. Inf. Optim. Sci., DOI : 1080/02522667.2018.1480468.
  • Hou, Y. and Tao, Q., (2016), Borderenergetic threshold graphs, MATCH Commun. Math. Comput. Chem., 75, pp. 253-262.
  • Li, X., Shi, Y. and Gutman, I., (2012) Graph energy, Springer, New York.
  • Li, X., Wei, M. and Gong, S., (2015), A computer search for the borderenergetic graphs of order 10
  • MATCH Commun. Math. Comput. Chem., 74, pp. 333-342. Li, X., Wei, M. and Zhu, M., (2016), Borderenergetic graphs with small maximum or large minimum degrees, MATCH Commun. Math. Comput. Chem., 77, pp. 25-36.
  • McKay, B. D., (2006), nauty User’s Guide, (version 2.2), Technical Report TR-CS-90-02, Computer
  • Science Department, Australian National University, available at http://cs.anu.edu.au/people/bdm/. Ramane, H. S., Gundloor, M. M. and Hosamani, S. M., (2016), Seidel equienergetic graphs, Bulletin of Mathematical Sciences and Applications, 16, pp. 62-69.
  • Roman, S., (1992), Advanced Linear Algebra, Graduate Texts in Mathematics, vol. 135. Springer, New York.
  • Shao, Z. and Deng, F., (2016), Correcting the number of borderenergetic graphs of order 10, MATCH
  • Commun. Math. Comput. Chem., 75, pp. 263-266. Tura, F., (2017), L-borderenergetic graphs, MATCH Commun. Math. Comput. Chem., 77, pp. 37-44.
  • Figure 7. Seidel borderenergetic graphs of order 9. Figure 8. Seidel borderenergetic graphs of order 10. van Lint, J. H. and Seidel, J. J., (1966), Equilateral point sets in elliptic geometry, Nederl. Akad.
There are 23 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

M. H. Nezhaad This is me

M. Ghorbani This is me

Publication Date March 1, 2020
Published in Issue Year 2020 Volume: 10 Issue: 2

Cite