DEGREE SUM SPECTRA AND DEGREE SUM ENERGY OF CERTAIN FAMILIES OF GRAPHS
Year 2025,
Volume: 15 Issue: 9, 2284 - 2296, 01.09.2025
Keerthi G. Mirajkar
Roopa S. Naikar
Parvathalu Bparvat
Abstract
For any simple graph G, the degree sum matrix is defined as a matrix in which each entry represents the sum of the degrees of a pair of vertices. The degree sum energy is the absolute sum of the eigenvalues of the degree sum matrix of G. In this paper, we determine the degree sum spectra and the degree sum energy of certain classes of graphs and their complements.
Thanks
The authors are grateful to the referees for their valuable comments, which have improved the presentation of the paper. The author R. S. Naikar is thankful to Karnataka Science and Technology Promotion Society, Bengalore, India for providing Ph. D. fellowship.
References
-
Cvetkovic, D., Rowlinson, P. and Simic, S., (2009), An Introduction to the Theory of Graph Spectra., Cambridge University Press, Cambridge.
-
Lewis, D. W., (1995), Matrix Theory, Allied Publishers, Bombay.
-
Gallian, J. A., (2018), A dynamic survey of graph labeling, Electron. J. Combin., 6, 6(25), pp. 4–623.
-
Gutman, I., (1978), The energy of a graph, Ber. Math. Statist. Sekt. Forsch. Graz., 103, pp. 1–22.
-
Jog, S. R., Hande, S. P. and Revankar, D. S., (2013), Degree sum polynomial of graph valued functions on regular graphs, Int. J. Graph Theory, 1(3), pp. 108–115.
-
Jog, S. R. and Kotambari, R., (2016), Degree sum energy of some graphs, Annals Pure Appl. Math., 11(1), pp. 17–27.
-
Ramane, H. S., Revankar, D. S. and Patil, J. B., (2013), Bounds for the degree sum eigenvalue and degree sum energy of a graph, Int. J. Pure and Appl. Math. Sci., 6(2), pp. 161–167.
-
Ramane, H. S. and Shinde, S. S., (2017), Degree exponent polynomial of graphs obtained by some graph operations, Electron. Notes Disc. Math., 63, pp. 161–168.
Year 2025,
Volume: 15 Issue: 9, 2284 - 2296, 01.09.2025
Keerthi G. Mirajkar
Roopa S. Naikar
Parvathalu Bparvat
References
-
Cvetkovic, D., Rowlinson, P. and Simic, S., (2009), An Introduction to the Theory of Graph Spectra., Cambridge University Press, Cambridge.
-
Lewis, D. W., (1995), Matrix Theory, Allied Publishers, Bombay.
-
Gallian, J. A., (2018), A dynamic survey of graph labeling, Electron. J. Combin., 6, 6(25), pp. 4–623.
-
Gutman, I., (1978), The energy of a graph, Ber. Math. Statist. Sekt. Forsch. Graz., 103, pp. 1–22.
-
Jog, S. R., Hande, S. P. and Revankar, D. S., (2013), Degree sum polynomial of graph valued functions on regular graphs, Int. J. Graph Theory, 1(3), pp. 108–115.
-
Jog, S. R. and Kotambari, R., (2016), Degree sum energy of some graphs, Annals Pure Appl. Math., 11(1), pp. 17–27.
-
Ramane, H. S., Revankar, D. S. and Patil, J. B., (2013), Bounds for the degree sum eigenvalue and degree sum energy of a graph, Int. J. Pure and Appl. Math. Sci., 6(2), pp. 161–167.
-
Ramane, H. S. and Shinde, S. S., (2017), Degree exponent polynomial of graphs obtained by some graph operations, Electron. Notes Disc. Math., 63, pp. 161–168.