Research Article
BibTex RIS Cite

DEGREE SUM SPECTRA AND DEGREE SUM ENERGY OF CERTAIN FAMILIES OF GRAPHS

Year 2025, Volume: 15 Issue: 9, 2284 - 2296, 01.09.2025

Abstract

For any simple graph G, the degree sum matrix is defined as a matrix in which each entry represents the sum of the degrees of a pair of vertices. The degree sum energy is the absolute sum of the eigenvalues of the degree sum matrix of G. In this paper, we determine the degree sum spectra and the degree sum energy of certain classes of graphs and their complements.

Thanks

The authors are grateful to the referees for their valuable comments, which have improved the presentation of the paper. The author R. S. Naikar is thankful to Karnataka Science and Technology Promotion Society, Bengalore, India for providing Ph. D. fellowship.

References

  • Cvetkovic, D., Rowlinson, P. and Simic, S., (2009), An Introduction to the Theory of Graph Spectra., Cambridge University Press, Cambridge.
  • Lewis, D. W., (1995), Matrix Theory, Allied Publishers, Bombay.
  • Gallian, J. A., (2018), A dynamic survey of graph labeling, Electron. J. Combin., 6, 6(25), pp. 4–623.
  • Gutman, I., (1978), The energy of a graph, Ber. Math. Statist. Sekt. Forsch. Graz., 103, pp. 1–22.
  • Jog, S. R., Hande, S. P. and Revankar, D. S., (2013), Degree sum polynomial of graph valued functions on regular graphs, Int. J. Graph Theory, 1(3), pp. 108–115.
  • Jog, S. R. and Kotambari, R., (2016), Degree sum energy of some graphs, Annals Pure Appl. Math., 11(1), pp. 17–27.
  • Ramane, H. S., Revankar, D. S. and Patil, J. B., (2013), Bounds for the degree sum eigenvalue and degree sum energy of a graph, Int. J. Pure and Appl. Math. Sci., 6(2), pp. 161–167.
  • Ramane, H. S. and Shinde, S. S., (2017), Degree exponent polynomial of graphs obtained by some graph operations, Electron. Notes Disc. Math., 63, pp. 161–168.

Year 2025, Volume: 15 Issue: 9, 2284 - 2296, 01.09.2025

Abstract

References

  • Cvetkovic, D., Rowlinson, P. and Simic, S., (2009), An Introduction to the Theory of Graph Spectra., Cambridge University Press, Cambridge.
  • Lewis, D. W., (1995), Matrix Theory, Allied Publishers, Bombay.
  • Gallian, J. A., (2018), A dynamic survey of graph labeling, Electron. J. Combin., 6, 6(25), pp. 4–623.
  • Gutman, I., (1978), The energy of a graph, Ber. Math. Statist. Sekt. Forsch. Graz., 103, pp. 1–22.
  • Jog, S. R., Hande, S. P. and Revankar, D. S., (2013), Degree sum polynomial of graph valued functions on regular graphs, Int. J. Graph Theory, 1(3), pp. 108–115.
  • Jog, S. R. and Kotambari, R., (2016), Degree sum energy of some graphs, Annals Pure Appl. Math., 11(1), pp. 17–27.
  • Ramane, H. S., Revankar, D. S. and Patil, J. B., (2013), Bounds for the degree sum eigenvalue and degree sum energy of a graph, Int. J. Pure and Appl. Math. Sci., 6(2), pp. 161–167.
  • Ramane, H. S. and Shinde, S. S., (2017), Degree exponent polynomial of graphs obtained by some graph operations, Electron. Notes Disc. Math., 63, pp. 161–168.
There are 8 citations in total.

Details

Primary Language English
Subjects Combinatorics and Discrete Mathematics (Excl. Physical Combinatorics)
Journal Section Research Articles
Authors

Keerthi G. Mirajkar This is me 0000-0002-8479-3575

Roopa S. Naikar This is me 0009-0007-7597-5864

Parvathalu Bparvat 0000-0002-5151-8446

Publication Date September 1, 2025
Submission Date August 24, 2024
Acceptance Date February 6, 2025
Published in Issue Year 2025 Volume: 15 Issue: 9

Cite