Research Article
BibTex RIS Cite

SOSYAL BOT ALGILAMA TEKNİKLERİ VE ARAŞTIRMA YÖNLERİ ÜZERİNE BİR İNCELEME

Year 2018, Volume: 4 Issue: 1, 10 - 20, 30.06.2018
https://doi.org/10.18640/ubgmd.348517

Abstract



Facebook, Twitter, LinkedIn gibi çevrimiçi sosyal
ağların (OSN) popülerliği ve web servislerinin yaygınlığı, bu alanlarda sosyal
bot olarak nitelendirdiğimiz yazılımsal sosyal aktörlerin ortaya çıkmasına ve
yaygınlaşmasına neden oldu. Ancak çoğunlukla bu aktörler kötü rollerde
karşımıza çıkmaktadırlar.  Örneğin,
sosyal botlar insanmış gibi sohbetlere katılma, başka hesapları çalarak
üzerinden dolandırıcılık yapma, yanlış bilgi yayma, borsayı manipüle etme,
sahte halk tabakası oluşturarak propaganda yapma gibi ciddi problemlerde
karşımıza çıkmaktadırlar. Bununla beraber, istenmeyen postaları ve zararlı
yazılımları yaymanın en etkin araçları haline gelmişlerdir. Dahası, botlar
gerçek hesapları ele geçirerek “zombi bilgisayar ağı” (botnet attack)
saldırıları düzenlemekte de kullanılabiliyorlar. Öte yandan, sosyal botların
sosyal paylaşım ağları üzerindeki yaygınlığı ve önemi inkâr edilemez bir
gerçektir. Bu çalışmada, kötü niyetli sosyal botların potansiyel tehlikeleri
vurgulanmıştır. Sonrasında, metodolojik bir sınıflandırma içerisinde
literatürdeki bot tespit yaklaşımları, bu yaklaşımların sınırları ve açık
problemleri gözden geçirilmiştir. Makalenin son bölümünde, problemi çözmeye
yönelik iki yeni yaklaşım önerilmiştir.




References

  • [1] S. K. Dehade and A. M. Bagade, "A review on detecting automation on Twitter accounts," Eur. J. Adv. Eng. Technol, vol. 2, pp. 69-72, 2015.
  • [2] Z. Chu, S. Gianvecchio, H. Wang, and S. Jajodia, "Detecting automation of twitter accounts: Are you a human, bot, or cyborg?," IEEE Transactions on Dependable and Secure Computing, vol. 9, pp. 811-824, 2012.
  • [3] V. Subrahmanian, A. Azaria, S. Durst, V. Kagan, A. Galstyan, K. Lerman, et al., "The darpa twitter bot challenge," arXiv preprint arXiv:1601.05140, 2016.
  • [4] (2016, September 12). Wikipedia:Creating a bot. Available: https://en.wikipedia.org/wiki/Wikipedia:Creating_a_bot
  • [5] E. Ferrera, "The Rise of Social Bots," 2016, Available: https://vimeo.com/166538072.
  • [6] C. Freitas, F. Benevenuto, S. Ghosh, and A. Veloso, "Reverse engineering socialbot infiltration strategies in twitter," in Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, 2015, pp. 25-32.
  • [7] D. Mail, "Syrian Electronic Army linked to hack attack on AP Twitter feed that 'broke news' Obama had been injured in White House blast and sent Dow Jones plunging," 2013, Available: http://www.dailymail.co.uk/news/article-2314001/Syrian-Electronic-Army-linked-hack-attack-AP-Twitter-feed-broke-news-Obama-injured-White-House-blast-sent-Dow-Jones-plunging.html
  • [8] A. Bienkov, "Astroturfing: what is it and why does it matter?," in The Guardian, ed, 2012.
  • [9] J. Ratkiewicz, M. Conover, M. Meiss, B. Gonçalves, A. Flammini, and F. Menczer, "Detecting and Tracking Political Abuse in Social Media," ICWSM, vol. 11, pp. 297-304, 2011.
  • [10] Y. Boshmaf, I. Muslukhov, K. Beznosov, and M. Ripeanu, "The socialbot network: when bots socialize for fame and money," in Proceedings of the 27th Annual Computer Security Applications Conference, 2011, pp. 93-102.
  • [11] B. Schreckinger. (2016, September 30,2016) Inside Trump's 'cyborg' Twitter army. Available: http://www.politico.com/story/2016/09/donald-trump-twitter-army-228923
  • [12] O. Goga, G. Venkatadri, and K. P. Gummadi, "The doppelgänger bot attack: Exploring identity impersonation in online social networks," in Proceedings of the 2015 ACM Conference on Internet Measurement Conference, 2015, pp. 141-153.
  • [13] Abokhodair, N., Yoo, D., & McDonald, D. W. (2015, February). Dissecting a social botnet: Growth, content and influence in Twitter. In Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work & Social Computing (pp. 839-851). ACM.
  • [14] Sybil attack. Available: https://en.wikipedia.org/wiki/Sybil_attack
  • [15] P. Gao, N. Z. Gong, S. Kulkarni, K. Thomas, and P. Mittal, "Sybilframe: A defense-in-depth framework for structure-based sybil detection," arXiv preprint arXiv:1503.02985, 2015.
  • [16] D. Mulamba, I. Ray, and I. Ray, "SybilRadar: A Graph-Structure Based Framework for Sybil Detection in On-line Social Networks," in IFIP International Information Security and Privacy Conference, 2016, pp. 179-193.
  • [17] N. Z. Gong, M. Frank, and P. Mittal, "Sybilbelief: A semi-supervised learning approach for structure-based sybil detection," IEEE Transactions on Information Forensics and Security, vol. 9, pp. 976-987, 2014.
  • [18] J. Parsons. (2015, September 12). Facebook’s War Continues Against Fake Profiles and Bots. Available: http://www.huffingtonpost.com/james-parsons/facebooks-war-continues-against-fake-profiles-and-bots_b_6914282.html
  • [19] K. Pearson, "The problem of the random walk," Nature, vol. 72, p. 294, 1905.
  • [20] B. Carminati, E. Ferrari, and M. Viviani, "Security and trust in online social networks," Synthesis Lectures on Information Security, Privacy, & Trust, vol. 4, pp. 1-120, 2013.
  • [21] G. Danezis and P. Mittal, "SybilInfer: Detecting Sybil Nodes using Social Networks," in NDSS, 2009.
  • [22] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman, "Sybilguard: defending against sybil attacks via social networks," in ACM SIGCOMM Computer Communication Review, 2006, pp. 267-278.
  • [23] H. Yu, P. B. Gibbons, M. Kaminsky, and F. Xiao, "Sybillimit: A near-optimal social network defense against sybil attacks," in 2008 IEEE Symposium on Security and Privacy (sp 2008), 2008, pp. 3-17.
  • [24] Q. Cao, M. Sirivianos, X. Yang, and T. Pregueiro. (2016). SybilRank. Available: http://www.tid.es/research/areas/sybil-rank
  • [25] G. R. Cross and A. K. Jain, "Markov random field texture models," IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 25-39, 1983.
  • [26] K. P. Murphy, Y. Weiss, and M. I. Jordan, "Loopy belief propagation for approximate inference: An empirical study," in Proceedings of the Fifteenth conference on Uncertainty in artificial intelligence, 1999, pp. 467-475.
  • [27] A. Mohaisen, A. Yun, and Y. Kim, "Measuring the mixing time of social graphs," in Proceedings of the 10th ACM SIGCOMM conference on Internet measurement, 2010, pp. 383-389.
  • [28] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, "Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters," Internet Mathematics, vol. 6, pp. 29-123, 2009.
  • [29] B. Viswanath, A. Post, K. P. Gummadi, and A. Mislove, "An analysis of social network-based sybil defenses," ACM SIGCOMM Computer Communication Review, vol. 40, pp. 363-374, 2010.
  • [30] Y. Boshmaf, K. Beznosov, and M. Ripeanu, "Graph-based sybil detection in social and information systems," in Advances in Social Networks Analysis and Mining (ASONAM), 2013 IEEE/ACM International Conference on, 2013, pp. 466-473.
  • [31] Y. Xie, F. Yu, Q. Ke, M. Abadi, E. Gillum, K. Vitaldevaria, et al., "Innocent by association: early recognition of legitimate users," in Proceedings of the 2012 ACM conference on Computer and communications security, 2012, pp. 353-364.
  • [32] J. Jiang, C. Wilson, X. Wang, W. Sha, P. Huang, Y. Dai, et al., "Understanding latent interactions in online social networks," ACM Transactions on the Web (TWEB), vol. 7, p. 18, 2013.
  • [33] Z. Yang, C. Wilson, X. Wang, T. Gao, B. Y. Zhao, and Y. Dai, "Uncovering social network sybils in the wild," ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 8, p. 2, 2014.
  • [34] G. Wang, M. Mohanlal, C. Wilson, X. Wang, M. Metzger, H. Zheng, et al., "Social turing tests: Crowdsourcing sybil detection," arXiv preprint arXiv:1205.3856, 2012.
  • [35] (2016). Overview of Mechanical Turk. Available: http://docs.aws.amazon.com/AWSMechTurk/latest/RequesterUI/OverviewofMturk.html
  • [36] K. Lee, B. D. Eoff, and J. Caverlee, "Seven Months with the Devils: A Long-Term Study of Content Polluters on Twitter," in ICWSM, 2011.
  • [37] J. P. Dickerson, V. Kagan, and V. Subrahmanian, "Using sentiment to detect bots on Twitter: Are humans more opinionated than bots?," in Advances in Social Networks Analysis and Mining (ASONAM), 2014 IEEE/ACM International Conference on, 2014, pp. 620-627.
  • [38] C. A. Davis, O. Varol, E. Ferrara, A. Flammini, and F. Menczer, "Botornot: A system to evaluate social bots," in Proceedings of the 25th International Conference Companion on World Wide Web, 2016, pp. 273-274.
  • [39] O. Varol, E. Ferrara, C. A. Davis, F. Menczer, and A. Flammini, "Online human-bot interactions: Detection, estimation, and characterization," arXiv preprint arXiv:1703.03107, 2017.
Year 2018, Volume: 4 Issue: 1, 10 - 20, 30.06.2018
https://doi.org/10.18640/ubgmd.348517

Abstract

References

  • [1] S. K. Dehade and A. M. Bagade, "A review on detecting automation on Twitter accounts," Eur. J. Adv. Eng. Technol, vol. 2, pp. 69-72, 2015.
  • [2] Z. Chu, S. Gianvecchio, H. Wang, and S. Jajodia, "Detecting automation of twitter accounts: Are you a human, bot, or cyborg?," IEEE Transactions on Dependable and Secure Computing, vol. 9, pp. 811-824, 2012.
  • [3] V. Subrahmanian, A. Azaria, S. Durst, V. Kagan, A. Galstyan, K. Lerman, et al., "The darpa twitter bot challenge," arXiv preprint arXiv:1601.05140, 2016.
  • [4] (2016, September 12). Wikipedia:Creating a bot. Available: https://en.wikipedia.org/wiki/Wikipedia:Creating_a_bot
  • [5] E. Ferrera, "The Rise of Social Bots," 2016, Available: https://vimeo.com/166538072.
  • [6] C. Freitas, F. Benevenuto, S. Ghosh, and A. Veloso, "Reverse engineering socialbot infiltration strategies in twitter," in Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, 2015, pp. 25-32.
  • [7] D. Mail, "Syrian Electronic Army linked to hack attack on AP Twitter feed that 'broke news' Obama had been injured in White House blast and sent Dow Jones plunging," 2013, Available: http://www.dailymail.co.uk/news/article-2314001/Syrian-Electronic-Army-linked-hack-attack-AP-Twitter-feed-broke-news-Obama-injured-White-House-blast-sent-Dow-Jones-plunging.html
  • [8] A. Bienkov, "Astroturfing: what is it and why does it matter?," in The Guardian, ed, 2012.
  • [9] J. Ratkiewicz, M. Conover, M. Meiss, B. Gonçalves, A. Flammini, and F. Menczer, "Detecting and Tracking Political Abuse in Social Media," ICWSM, vol. 11, pp. 297-304, 2011.
  • [10] Y. Boshmaf, I. Muslukhov, K. Beznosov, and M. Ripeanu, "The socialbot network: when bots socialize for fame and money," in Proceedings of the 27th Annual Computer Security Applications Conference, 2011, pp. 93-102.
  • [11] B. Schreckinger. (2016, September 30,2016) Inside Trump's 'cyborg' Twitter army. Available: http://www.politico.com/story/2016/09/donald-trump-twitter-army-228923
  • [12] O. Goga, G. Venkatadri, and K. P. Gummadi, "The doppelgänger bot attack: Exploring identity impersonation in online social networks," in Proceedings of the 2015 ACM Conference on Internet Measurement Conference, 2015, pp. 141-153.
  • [13] Abokhodair, N., Yoo, D., & McDonald, D. W. (2015, February). Dissecting a social botnet: Growth, content and influence in Twitter. In Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work & Social Computing (pp. 839-851). ACM.
  • [14] Sybil attack. Available: https://en.wikipedia.org/wiki/Sybil_attack
  • [15] P. Gao, N. Z. Gong, S. Kulkarni, K. Thomas, and P. Mittal, "Sybilframe: A defense-in-depth framework for structure-based sybil detection," arXiv preprint arXiv:1503.02985, 2015.
  • [16] D. Mulamba, I. Ray, and I. Ray, "SybilRadar: A Graph-Structure Based Framework for Sybil Detection in On-line Social Networks," in IFIP International Information Security and Privacy Conference, 2016, pp. 179-193.
  • [17] N. Z. Gong, M. Frank, and P. Mittal, "Sybilbelief: A semi-supervised learning approach for structure-based sybil detection," IEEE Transactions on Information Forensics and Security, vol. 9, pp. 976-987, 2014.
  • [18] J. Parsons. (2015, September 12). Facebook’s War Continues Against Fake Profiles and Bots. Available: http://www.huffingtonpost.com/james-parsons/facebooks-war-continues-against-fake-profiles-and-bots_b_6914282.html
  • [19] K. Pearson, "The problem of the random walk," Nature, vol. 72, p. 294, 1905.
  • [20] B. Carminati, E. Ferrari, and M. Viviani, "Security and trust in online social networks," Synthesis Lectures on Information Security, Privacy, & Trust, vol. 4, pp. 1-120, 2013.
  • [21] G. Danezis and P. Mittal, "SybilInfer: Detecting Sybil Nodes using Social Networks," in NDSS, 2009.
  • [22] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman, "Sybilguard: defending against sybil attacks via social networks," in ACM SIGCOMM Computer Communication Review, 2006, pp. 267-278.
  • [23] H. Yu, P. B. Gibbons, M. Kaminsky, and F. Xiao, "Sybillimit: A near-optimal social network defense against sybil attacks," in 2008 IEEE Symposium on Security and Privacy (sp 2008), 2008, pp. 3-17.
  • [24] Q. Cao, M. Sirivianos, X. Yang, and T. Pregueiro. (2016). SybilRank. Available: http://www.tid.es/research/areas/sybil-rank
  • [25] G. R. Cross and A. K. Jain, "Markov random field texture models," IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 25-39, 1983.
  • [26] K. P. Murphy, Y. Weiss, and M. I. Jordan, "Loopy belief propagation for approximate inference: An empirical study," in Proceedings of the Fifteenth conference on Uncertainty in artificial intelligence, 1999, pp. 467-475.
  • [27] A. Mohaisen, A. Yun, and Y. Kim, "Measuring the mixing time of social graphs," in Proceedings of the 10th ACM SIGCOMM conference on Internet measurement, 2010, pp. 383-389.
  • [28] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, "Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters," Internet Mathematics, vol. 6, pp. 29-123, 2009.
  • [29] B. Viswanath, A. Post, K. P. Gummadi, and A. Mislove, "An analysis of social network-based sybil defenses," ACM SIGCOMM Computer Communication Review, vol. 40, pp. 363-374, 2010.
  • [30] Y. Boshmaf, K. Beznosov, and M. Ripeanu, "Graph-based sybil detection in social and information systems," in Advances in Social Networks Analysis and Mining (ASONAM), 2013 IEEE/ACM International Conference on, 2013, pp. 466-473.
  • [31] Y. Xie, F. Yu, Q. Ke, M. Abadi, E. Gillum, K. Vitaldevaria, et al., "Innocent by association: early recognition of legitimate users," in Proceedings of the 2012 ACM conference on Computer and communications security, 2012, pp. 353-364.
  • [32] J. Jiang, C. Wilson, X. Wang, W. Sha, P. Huang, Y. Dai, et al., "Understanding latent interactions in online social networks," ACM Transactions on the Web (TWEB), vol. 7, p. 18, 2013.
  • [33] Z. Yang, C. Wilson, X. Wang, T. Gao, B. Y. Zhao, and Y. Dai, "Uncovering social network sybils in the wild," ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 8, p. 2, 2014.
  • [34] G. Wang, M. Mohanlal, C. Wilson, X. Wang, M. Metzger, H. Zheng, et al., "Social turing tests: Crowdsourcing sybil detection," arXiv preprint arXiv:1205.3856, 2012.
  • [35] (2016). Overview of Mechanical Turk. Available: http://docs.aws.amazon.com/AWSMechTurk/latest/RequesterUI/OverviewofMturk.html
  • [36] K. Lee, B. D. Eoff, and J. Caverlee, "Seven Months with the Devils: A Long-Term Study of Content Polluters on Twitter," in ICWSM, 2011.
  • [37] J. P. Dickerson, V. Kagan, and V. Subrahmanian, "Using sentiment to detect bots on Twitter: Are humans more opinionated than bots?," in Advances in Social Networks Analysis and Mining (ASONAM), 2014 IEEE/ACM International Conference on, 2014, pp. 620-627.
  • [38] C. A. Davis, O. Varol, E. Ferrara, A. Flammini, and F. Menczer, "Botornot: A system to evaluate social bots," in Proceedings of the 25th International Conference Companion on World Wide Web, 2016, pp. 273-274.
  • [39] O. Varol, E. Ferrara, C. A. Davis, F. Menczer, and A. Flammini, "Online human-bot interactions: Detection, estimation, and characterization," arXiv preprint arXiv:1703.03107, 2017.
There are 39 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Arzum Karataş

Serap Şahin

Publication Date June 30, 2018
Submission Date November 1, 2017
Published in Issue Year 2018 Volume: 4 Issue: 1

Cite

IEEE A. Karataş and S. Şahin, “SOSYAL BOT ALGILAMA TEKNİKLERİ VE ARAŞTIRMA YÖNLERİ ÜZERİNE BİR İNCELEME”, UBGMD, vol. 4, no. 1, pp. 10–20, 2018, doi: 10.18640/ubgmd.348517.