Review
BibTex RIS Cite

Investigation of Hybrid Photovoltaic Thermal PVT-water and PVT-air Solar Collector

Year 2019, Volume: 2 Issue: 3, 95 - 102, 01.07.2019

Abstract

Nowadays, the available commercial solar cells can convert solar energy into electrical energy with a yield of less than 30% and the conversion efficiency decreases inversely with the increase in temperature.
With the increase in population and industrialization rapidly, energy needs are also increasing. The depletion of limited fuels in the world continues rapidly. Renewable energy sources should be used for sustainable management of energy resources. Among renewable energy sources, solar energy is seen as a promising resource for the future. In recent years, Hybrid Photovoltaic Thermal (PVT) solar systems have become widespread worldwide to obtain electrical and thermal energy. While the solar panels on the market operate at low efficiency, the efficiency of converting solar energy to electrical energy decreases as the temperature increases. Hybrid PVT solar system has been developed to obtain thermal energy in addition to increasing electrical energy efficiency in solar panels. In this study, the efficiency of electrical and thermal energy in solar panels was investigated by using PVT-water and PVT-air in hybrid solar system. The compatibility between PVT-water and PVT-air systems has been discussed.

References

  • [1] Wolf, M., 1976, Performance analysis of combined heating and photovoltaic power systems for residences, Energy Conversation Management, (16), 79–90.
  • [2] Hendrie, S. D., 1982, Final Report, Report, MIT.
  • [3] Prakash, J., 1994, Transient analysis of a photovoltaic-thermal solar collector for co-generation of electricity and hot air/water, Energy Conversation Management, (35), 967–972.
  • [4] Ji, J., Chow, T. ve He, W., 2003, Dynamic performance of hybrid photovoltaic/thermal collector wall in Hong Kong, Building and Environment, (38), 1327-1334.
  • [5] Elswijk, M. J., Jong, M. J. M., Strootman, K. J., Braakman J. N. C., Lange, E. T. N. ve Smit, W. F., 2004, Photovoltaic/thermal collectors in large solar thermal system,19th European PV Solar Energy Conference and Exhibition, 7-11 June 2004, Paris, France.
  • [6] Tripanagnostopoulos, Y., Souliotis, M., Battisti, R. ve Corrado, A., 2005, Energy, cost and LCA results of PV and hybrid PV/T solar systems, Progress in Photovoltaics: Research and applications, 13(3), 235-250.
  • [7] Ji, J., Lu, J. P., Chow, T. T., He, W. ve Pei, G., 2007, A sensitivity study of a hybrid photovoltaic/thermal water-heating system with natural circulation, Applied Energy, (84), 222-237.
  • [8] Erdil, E., Ilkan, M. ve Egelioglu, F., 2008, An experimental study on energy generation with a photovoltaic (PV)-solar thermal hybrid system, Energy,(33), 1241– 1245.
  • [9] Al-Waeli, A. H., Sopian, K., Kazem, H. A. ve Chaichan, M. T., 2017, Photovoltaic/Thermal (PV/T) systems: Status and future prospects, Renewable and Sustainable Energy Reviews, 77, 109-130.
  • [10] Kazem, H. A. ve Chaichan, M. T., 2016, Effect of environmental variables on photovoltaic performance-based on experimental studies, International Journal of Civil, Mechanical and Energy Science (IJCMES), 2(4), 1-8.
  • [11] Gasparin, F. P., Bühler, A. J., Rampinelli, G. A. ve Krenzinger, A., 2016, Statistical analysis of I–V curve parameters from photovoltaic modules, Solar energy, 131, 30-38.
  • [12] Kapsalis, V. ve Karamani, D., 2015, On the effect of roof added PVs on building's energy demand, Energy Build, 108,195–204.
  • [13] Al-Sabounchi, A. M., Yalyali, S. A. ve Al-Thani, H. A., 2013, Design and performance evaluation of a photovoltaic grid-connected system in hot weather conditions, Renewable energy, 53, 71-78.
  • [14] Sandnes, B. ve Rekstad, J., 2002, A photovoltaic/thermal (PV/T) collector with a polymer absorber plate, Experimental study and analytical model, Solar Energy, 72(1), 63-73.
  • [15] Chow, T. T., He, W., Chan, A. L. S., Fong, K. F., Lin, Z. ve Ji, J., 2008, Computer modeling and experimental validation of a building-integrated photovoltaic and water heating system, Applied Thermal Engineering, 28(11-12), 1356-1364.
  • [16] Sardarabadi, M., Passandideh Fard, M., Sardarabadi, H. ve Zeinali Heris, S., 2012, Computer modelling and Experimental Validation of a Photovoltaic Thermal (PV/T) Water Based Collector System, In 2nd International Conference on Power and Energy Systems (ICPES2012).
  • [17] Bazilian, M. D., Leenders, F., Van Der Ree, B. G. C. ve Prasad, D., 2001, Photovoltaic cogeneration in the built environment, Solar Energy, 71(1), 57-69.
  • [18] An, W.T. ve Liu, Y.F., 2007, The study of PV/thermal integrated buildings solar system, Applied Energy Technology, 23(11), 33–9.
  • [19] Seifried, D. ve Witzel, W., 2010, Renewable energy: the facts, Routledge, Taylor & Francis, 52-60.
  • [20] Tripanagnostopoulos, Y. ve Tselepis, S., 2003, Hybrid solar/wind (PVT/WT) building integrated systems, In Proc. 2nd International European PV-Hybrid and Mini-Grid Conference, Kassel, Germany,25-26, Sep,329-333.
  • [21] Kohlenbach, P. ve Jakob, U., 2014, Solar cooling: the earthscan expert guide to solar cooling systems, Routledge, 5-19.
  • [22] Mojumder, M. S. S., Uddin, M. M., Alam, I. ve Enam, H. K., 2011, Study of hybrid photovoltaic thermal (PV/T) solar system with modification of thin metallic sheet in the air channel, Journal of Energy Technologies and Policy, 3, 47-55.
  • [23] Tyagi, V. V., Kaushik, S. C. ve Tyagi, S. K., 2012, Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology, Renewable and Sustainable Energy Reviews, 16(3), 1383-1398.
  • [24] Chow, T. T., 2003, Performance analysis of photovoltaic-thermal collector by explicit dynamic model, Solar Energy, 75(2), 143-152.
  • [25] Zhang, X., Zhao, X., Smith, S., Xu, J. ve Yu, X., 2012, Review of R&D progress and practical application of the solar photovoltaic/thermal (PV/T) Technologies, Renewable and Sustainable Energy Reviews, 16(1), 599-617.
  • [26] Charalambous, P. G., Maidment, G. G., Kalogirou, S. A. ve Yiakoumetti, K., 2007, Photovoltaic thermal (PV/T) collectors: A review, Applied Thermal Engineering, 27(2-3), 275-286.

Hibrit Fotovoltaik Isıl PVT-su ve PVT-hava Güneş Kollektörlerinin İncelenmesi

Year 2019, Volume: 2 Issue: 3, 95 - 102, 01.07.2019

Abstract

Günümüzde kullanılan ticari güneş pilleri % 30’dan daha düşük bir verimle güneş enerjisini elektrik enerjisine dönüştürebilmekte ve dönüşüm verimi, sıcaklık artışı ile ters orantılı olarak azalmaktadır.
Hızla nüfus ve sanayileşme artışıyla enerji ihtiyaçları da artmaktadır. Dünyada kısıtlı olan yakıtların tükenmesi hızla devam etmektedir. Enerji kaynaklarının sürdürülebilir biçimde yönetilmesi için yenilenebilir enerji kaynaklarına başvurulmalıdır. Yenilenebilir enerji kaynakları arasında, güneş enerjisi geleceğe umut verici bir kaynak olarak görülmektedir. Hibrit Fotovoltaik Termal (PVT) solar sistemleri son yıllarda elektrik ve termal enerjisi elde edilmek için dünya çapında yaygınlaşmaya başlamıştır. Piyasada bulunan güneş panelleri düşük verimle çalışırken sıcaklık artıkça güneş enerjisinin elektrik enerjisine dönüştürme verimi de düşmektedir. Güneş panellerinde, elektrik enerjisi verimi arttırmanın yanı sıra termal enerjisi elde edilmek için hibrit PVT solar sistemi geliştirilmiştir. Bu çalışmada, hibrit solar sisteminde PVT-su ve PVT-hava kullanılarak güneş panellerinde elektrik ve termal enerjisinin verimleri araştırılmıştır. PVT-su ve PVT-hava sistemleri arasında karşılaştırma yapılarak uygunluğunu tartışılmıştır.

References

  • [1] Wolf, M., 1976, Performance analysis of combined heating and photovoltaic power systems for residences, Energy Conversation Management, (16), 79–90.
  • [2] Hendrie, S. D., 1982, Final Report, Report, MIT.
  • [3] Prakash, J., 1994, Transient analysis of a photovoltaic-thermal solar collector for co-generation of electricity and hot air/water, Energy Conversation Management, (35), 967–972.
  • [4] Ji, J., Chow, T. ve He, W., 2003, Dynamic performance of hybrid photovoltaic/thermal collector wall in Hong Kong, Building and Environment, (38), 1327-1334.
  • [5] Elswijk, M. J., Jong, M. J. M., Strootman, K. J., Braakman J. N. C., Lange, E. T. N. ve Smit, W. F., 2004, Photovoltaic/thermal collectors in large solar thermal system,19th European PV Solar Energy Conference and Exhibition, 7-11 June 2004, Paris, France.
  • [6] Tripanagnostopoulos, Y., Souliotis, M., Battisti, R. ve Corrado, A., 2005, Energy, cost and LCA results of PV and hybrid PV/T solar systems, Progress in Photovoltaics: Research and applications, 13(3), 235-250.
  • [7] Ji, J., Lu, J. P., Chow, T. T., He, W. ve Pei, G., 2007, A sensitivity study of a hybrid photovoltaic/thermal water-heating system with natural circulation, Applied Energy, (84), 222-237.
  • [8] Erdil, E., Ilkan, M. ve Egelioglu, F., 2008, An experimental study on energy generation with a photovoltaic (PV)-solar thermal hybrid system, Energy,(33), 1241– 1245.
  • [9] Al-Waeli, A. H., Sopian, K., Kazem, H. A. ve Chaichan, M. T., 2017, Photovoltaic/Thermal (PV/T) systems: Status and future prospects, Renewable and Sustainable Energy Reviews, 77, 109-130.
  • [10] Kazem, H. A. ve Chaichan, M. T., 2016, Effect of environmental variables on photovoltaic performance-based on experimental studies, International Journal of Civil, Mechanical and Energy Science (IJCMES), 2(4), 1-8.
  • [11] Gasparin, F. P., Bühler, A. J., Rampinelli, G. A. ve Krenzinger, A., 2016, Statistical analysis of I–V curve parameters from photovoltaic modules, Solar energy, 131, 30-38.
  • [12] Kapsalis, V. ve Karamani, D., 2015, On the effect of roof added PVs on building's energy demand, Energy Build, 108,195–204.
  • [13] Al-Sabounchi, A. M., Yalyali, S. A. ve Al-Thani, H. A., 2013, Design and performance evaluation of a photovoltaic grid-connected system in hot weather conditions, Renewable energy, 53, 71-78.
  • [14] Sandnes, B. ve Rekstad, J., 2002, A photovoltaic/thermal (PV/T) collector with a polymer absorber plate, Experimental study and analytical model, Solar Energy, 72(1), 63-73.
  • [15] Chow, T. T., He, W., Chan, A. L. S., Fong, K. F., Lin, Z. ve Ji, J., 2008, Computer modeling and experimental validation of a building-integrated photovoltaic and water heating system, Applied Thermal Engineering, 28(11-12), 1356-1364.
  • [16] Sardarabadi, M., Passandideh Fard, M., Sardarabadi, H. ve Zeinali Heris, S., 2012, Computer modelling and Experimental Validation of a Photovoltaic Thermal (PV/T) Water Based Collector System, In 2nd International Conference on Power and Energy Systems (ICPES2012).
  • [17] Bazilian, M. D., Leenders, F., Van Der Ree, B. G. C. ve Prasad, D., 2001, Photovoltaic cogeneration in the built environment, Solar Energy, 71(1), 57-69.
  • [18] An, W.T. ve Liu, Y.F., 2007, The study of PV/thermal integrated buildings solar system, Applied Energy Technology, 23(11), 33–9.
  • [19] Seifried, D. ve Witzel, W., 2010, Renewable energy: the facts, Routledge, Taylor & Francis, 52-60.
  • [20] Tripanagnostopoulos, Y. ve Tselepis, S., 2003, Hybrid solar/wind (PVT/WT) building integrated systems, In Proc. 2nd International European PV-Hybrid and Mini-Grid Conference, Kassel, Germany,25-26, Sep,329-333.
  • [21] Kohlenbach, P. ve Jakob, U., 2014, Solar cooling: the earthscan expert guide to solar cooling systems, Routledge, 5-19.
  • [22] Mojumder, M. S. S., Uddin, M. M., Alam, I. ve Enam, H. K., 2011, Study of hybrid photovoltaic thermal (PV/T) solar system with modification of thin metallic sheet in the air channel, Journal of Energy Technologies and Policy, 3, 47-55.
  • [23] Tyagi, V. V., Kaushik, S. C. ve Tyagi, S. K., 2012, Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology, Renewable and Sustainable Energy Reviews, 16(3), 1383-1398.
  • [24] Chow, T. T., 2003, Performance analysis of photovoltaic-thermal collector by explicit dynamic model, Solar Energy, 75(2), 143-152.
  • [25] Zhang, X., Zhao, X., Smith, S., Xu, J. ve Yu, X., 2012, Review of R&D progress and practical application of the solar photovoltaic/thermal (PV/T) Technologies, Renewable and Sustainable Energy Reviews, 16(1), 599-617.
  • [26] Charalambous, P. G., Maidment, G. G., Kalogirou, S. A. ve Yiakoumetti, K., 2007, Photovoltaic thermal (PV/T) collectors: A review, Applied Thermal Engineering, 27(2-3), 275-286.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Environmental Engineering
Journal Section Articles
Authors

Muhammet Öksüz This is me

Faruk Köse This is me

Publication Date July 1, 2019
Submission Date August 1, 2018
Published in Issue Year 2019 Volume: 2 Issue: 3

Cite

APA Öksüz, M., & Köse, F. (2019). Hibrit Fotovoltaik Isıl PVT-su ve PVT-hava Güneş Kollektörlerinin İncelenmesi. Ulusal Çevre Bilimleri Araştırma Dergisi, 2(3), 95-102.
AMA Öksüz M, Köse F. Hibrit Fotovoltaik Isıl PVT-su ve PVT-hava Güneş Kollektörlerinin İncelenmesi. UCBAD. July 2019;2(3):95-102.
Chicago Öksüz, Muhammet, and Faruk Köse. “Hibrit Fotovoltaik Isıl PVT-Su Ve PVT-Hava Güneş Kollektörlerinin İncelenmesi”. Ulusal Çevre Bilimleri Araştırma Dergisi 2, no. 3 (July 2019): 95-102.
EndNote Öksüz M, Köse F (July 1, 2019) Hibrit Fotovoltaik Isıl PVT-su ve PVT-hava Güneş Kollektörlerinin İncelenmesi. Ulusal Çevre Bilimleri Araştırma Dergisi 2 3 95–102.
IEEE M. Öksüz and F. Köse, “Hibrit Fotovoltaik Isıl PVT-su ve PVT-hava Güneş Kollektörlerinin İncelenmesi”, UCBAD, vol. 2, no. 3, pp. 95–102, 2019.
ISNAD Öksüz, Muhammet - Köse, Faruk. “Hibrit Fotovoltaik Isıl PVT-Su Ve PVT-Hava Güneş Kollektörlerinin İncelenmesi”. Ulusal Çevre Bilimleri Araştırma Dergisi 2/3 (July 2019), 95-102.
JAMA Öksüz M, Köse F. Hibrit Fotovoltaik Isıl PVT-su ve PVT-hava Güneş Kollektörlerinin İncelenmesi. UCBAD. 2019;2:95–102.
MLA Öksüz, Muhammet and Faruk Köse. “Hibrit Fotovoltaik Isıl PVT-Su Ve PVT-Hava Güneş Kollektörlerinin İncelenmesi”. Ulusal Çevre Bilimleri Araştırma Dergisi, vol. 2, no. 3, 2019, pp. 95-102.
Vancouver Öksüz M, Köse F. Hibrit Fotovoltaik Isıl PVT-su ve PVT-hava Güneş Kollektörlerinin İncelenmesi. UCBAD. 2019;2(3):95-102.

 ❤ UCBAD