Derleme
BibTex RIS Kaynak Göster

Determination of Environmental Microorganisms by Image Analysis

Yıl 2020, Cilt: 3 Sayı: 2, 58 - 67, 30.06.2020

Öz

Environmental microorganisms are microscopic organisms found in natural (lake, river, sea, air, soil, etc) and artificial (suspended and attached biological reactor, oxidation ponds, constructed wetlands etc) environments that cannot be seen with the naked eye. The classification of environmental microorganisms is very important in monitoring environmental quality and operating biological reactors. However, microbiological analyzes are quite time consuming, laborious and expensive by conventional methods. In recent years, rapid advances in optical and software technology have allowed conceptualization and rapid recognition of small organisms such as bacteria and protozoa (0.1-100 µm) by means of microscopes. In this new classification technology, which is known as digital image processing, the microorganisms are preferably stained with a suitable dyestuff with taking the images by microscobe, after this image is processed morphologically and then taken into the computer's memory. Identification of the microorganism is performed by comparing with the processed images. In this study, the method of image processing which is very advantageous compared to the laborious classical methods and the expensive molecular microorganism determination methods, are explained conceptually and information about the limited studies are given.

Kaynakça

  • [1] Costa, J., Mesquita, D., Amaral, A., Alves, M., Ferreira, E.J.E.S., Research, P., 2013. Quantitative image analysis for the characterization of microbial aggregates in biological wastewater treatment: a review. 20, 5887-5912.
  • [2] Li, C., Shirahama, K., Grzegorzek, M.J.B., Engineering, B., 2015. Application of content-based image analysis to environmental microorganism classification. 35, 10-21.
  • [3] Tortora, G.J., Funke, B.R., Case, C.L., Johnson, T.R., 2004. Microbiology: an introduction. Benjamin Cummings San Francisco, CA.
  • [4] Maier, R.M., Pepper, I.L., Gerba, C.P., 2009. Environmental microbiology. Academic press.
  • [5] Biomol, 2019. Biomol GmbH - Life Science Shop, Germany.
  • [6] Selinummi, J., Seppälä, J., Yli-Harja, O., Puhakka, J.A.J.B., 2005. Software for quantification of labeled bacteria from digital microscope images by automated image analysis. 39, 859-863.
  • [7] Danielsen, J., Nordenfelt, P., 2017. Computer Vision-Based Image Analysis of Bacteria, Bacterial Pathogenesis. Springer, pp. 161-172.
  • [8] Mahmoudi, L., El Zaart, A., 2012. A survey of entropy image thresholding techniques, 2012 2nd international conference on advances in computational tools for engineering applications (ACTEA). IEEE, pp. 204-209.
  • [9] Zhang, Y., Wu, L.J.E., 2011. Optimal multi-level thresholding based on maximum Tsallis entropy via an artificial bee colony approach. 13, 841-859.
  • [10] Fang, M., Yue, G., Yu, Q., 2009. The study on an application of otsu method in canny operator, Proceedings. The 2009 International Symposium on Information Processing (ISIP 2009). Citeseer, p. 109.
  • [11] Forero, M.G., Cristóbal, G., Desco, M.J.J.o.m., 2006. Automatic identification of Mycobacterium tuberculosis by Gaussian mixture models. 223, 120-132.
  • [12] Ahmed, W.M., Bayraktar, B., Bhunia, A.K., Hirleman, E.D., Robinson, J.P., Rajwa, B.J.I.j.o.b., informatics, h., 2012. Classification of bacterial contamination using image processing and distributed computing. 17, 232-239.
  • [13] Dias, P.A., Dunkel, T., Fajado, D.A., de León Gallegos, E., Denecke, M., Wiedemann, P., Schneider, F.K., Suhr, H.J.B.e.o., 2016. Image processing for identification and quantification of filamentous bacteria in in situ acquired images. 15, 64.
  • [14] Maeda, Y., Sugiyama, Y., Kogiso, A., Lim, T.-K., Harada, M., Yoshino, T., Matsunaga, T., Tanaka, T.J.S., 2018. Colony Fingerprint-Based Discrimination of Staphylococcus species with Machine Learning Approaches. 18, 2789.

Çevresel Mikroorganizmaların İmaj Analizi ile Tespiti

Yıl 2020, Cilt: 3 Sayı: 2, 58 - 67, 30.06.2020

Öz

Çevresel mikroorganizmalar, doğal (göller, akarsular, denizler, hava, toprak vs) ve yapay (askıda ve bağlı büyümeli biyolojik reaktörler, oksidasyon havuzları, yapay sulak alanlar vs), ortamlarda bulunan, çevresel açıdan önemli, çıplak gözle görülemeyen mikroskobik canlılardır. Çevresel mikroorganizmaların sınıflandırılması çevresel kalitenin izlenmesi ve biyolojik reaktörlerin işletilmesinde çok önemli olmaktadır. Ancak, mevcut manuel yöntemlerle mikrobiyolojik analizler oldukça zaman alıcı, zahmetli ve pahalı olmaktadır. Son yıllarda optik ve yazılım teknolojisindeki hızlı gelişmeler bakteri ve protozoa gibi küçük canlıların (0,1-100 µm) mikroskoplar yardımıyla hızlı olarak tanısına ve sayılmasına kavramsal olarak imkân tanımıştır. Dijital imaj prosesleme olarak bilinen bu yeni sınıflandırma teknolojisinde öncelikle olarak mikroorganizmaların olarak tercihan uygun bir boyar madde ile boyaması yapılarak mikroskop ile görüntüsü çekilir, Daha sonra bu görüntü morfolojik olarak işlenerek bilgisayarın hafızasına alınır. Mevcut olan işlenmiş görüntülerle karşılaştırma yapılarak mikroorganizmanın tanısı gerçekleştirilir. Bu çalışmada çok üzün süreler alan zahmetli klasik yöntemler ve pahalı olan moleküler mikroorganizma tayin yöntemlerine kıyasla avantajlı görülen imaj prosesleme yöntemi kavramsal olarak anlatılmış ve yapılan sınırlı çalışmalar hakkında bilgi verilmiştir.

Kaynakça

  • [1] Costa, J., Mesquita, D., Amaral, A., Alves, M., Ferreira, E.J.E.S., Research, P., 2013. Quantitative image analysis for the characterization of microbial aggregates in biological wastewater treatment: a review. 20, 5887-5912.
  • [2] Li, C., Shirahama, K., Grzegorzek, M.J.B., Engineering, B., 2015. Application of content-based image analysis to environmental microorganism classification. 35, 10-21.
  • [3] Tortora, G.J., Funke, B.R., Case, C.L., Johnson, T.R., 2004. Microbiology: an introduction. Benjamin Cummings San Francisco, CA.
  • [4] Maier, R.M., Pepper, I.L., Gerba, C.P., 2009. Environmental microbiology. Academic press.
  • [5] Biomol, 2019. Biomol GmbH - Life Science Shop, Germany.
  • [6] Selinummi, J., Seppälä, J., Yli-Harja, O., Puhakka, J.A.J.B., 2005. Software for quantification of labeled bacteria from digital microscope images by automated image analysis. 39, 859-863.
  • [7] Danielsen, J., Nordenfelt, P., 2017. Computer Vision-Based Image Analysis of Bacteria, Bacterial Pathogenesis. Springer, pp. 161-172.
  • [8] Mahmoudi, L., El Zaart, A., 2012. A survey of entropy image thresholding techniques, 2012 2nd international conference on advances in computational tools for engineering applications (ACTEA). IEEE, pp. 204-209.
  • [9] Zhang, Y., Wu, L.J.E., 2011. Optimal multi-level thresholding based on maximum Tsallis entropy via an artificial bee colony approach. 13, 841-859.
  • [10] Fang, M., Yue, G., Yu, Q., 2009. The study on an application of otsu method in canny operator, Proceedings. The 2009 International Symposium on Information Processing (ISIP 2009). Citeseer, p. 109.
  • [11] Forero, M.G., Cristóbal, G., Desco, M.J.J.o.m., 2006. Automatic identification of Mycobacterium tuberculosis by Gaussian mixture models. 223, 120-132.
  • [12] Ahmed, W.M., Bayraktar, B., Bhunia, A.K., Hirleman, E.D., Robinson, J.P., Rajwa, B.J.I.j.o.b., informatics, h., 2012. Classification of bacterial contamination using image processing and distributed computing. 17, 232-239.
  • [13] Dias, P.A., Dunkel, T., Fajado, D.A., de León Gallegos, E., Denecke, M., Wiedemann, P., Schneider, F.K., Suhr, H.J.B.e.o., 2016. Image processing for identification and quantification of filamentous bacteria in in situ acquired images. 15, 64.
  • [14] Maeda, Y., Sugiyama, Y., Kogiso, A., Lim, T.-K., Harada, M., Yoshino, T., Matsunaga, T., Tanaka, T.J.S., 2018. Colony Fingerprint-Based Discrimination of Staphylococcus species with Machine Learning Approaches. 18, 2789.
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevre Bilimleri
Bölüm Makaleler
Yazarlar

Alper Alver Bu kişi benim

Emine Baştürk Bu kişi benim

Mustafa Işık Bu kişi benim

Yayımlanma Tarihi 30 Haziran 2020
Gönderilme Tarihi 16 Haziran 2019
Yayımlandığı Sayı Yıl 2020 Cilt: 3 Sayı: 2

Kaynak Göster

APA Alver, A., Baştürk, E., & Işık, M. (2020). Çevresel Mikroorganizmaların İmaj Analizi ile Tespiti. Ulusal Çevre Bilimleri Araştırma Dergisi, 3(2), 58-67.
AMA Alver A, Baştürk E, Işık M. Çevresel Mikroorganizmaların İmaj Analizi ile Tespiti. UCBAD. Haziran 2020;3(2):58-67.
Chicago Alver, Alper, Emine Baştürk, ve Mustafa Işık. “Çevresel Mikroorganizmaların İmaj Analizi Ile Tespiti”. Ulusal Çevre Bilimleri Araştırma Dergisi 3, sy. 2 (Haziran 2020): 58-67.
EndNote Alver A, Baştürk E, Işık M (01 Haziran 2020) Çevresel Mikroorganizmaların İmaj Analizi ile Tespiti. Ulusal Çevre Bilimleri Araştırma Dergisi 3 2 58–67.
IEEE A. Alver, E. Baştürk, ve M. Işık, “Çevresel Mikroorganizmaların İmaj Analizi ile Tespiti”, UCBAD, c. 3, sy. 2, ss. 58–67, 2020.
ISNAD Alver, Alper vd. “Çevresel Mikroorganizmaların İmaj Analizi Ile Tespiti”. Ulusal Çevre Bilimleri Araştırma Dergisi 3/2 (Haziran 2020), 58-67.
JAMA Alver A, Baştürk E, Işık M. Çevresel Mikroorganizmaların İmaj Analizi ile Tespiti. UCBAD. 2020;3:58–67.
MLA Alver, Alper vd. “Çevresel Mikroorganizmaların İmaj Analizi Ile Tespiti”. Ulusal Çevre Bilimleri Araştırma Dergisi, c. 3, sy. 2, 2020, ss. 58-67.
Vancouver Alver A, Baştürk E, Işık M. Çevresel Mikroorganizmaların İmaj Analizi ile Tespiti. UCBAD. 2020;3(2):58-67.
 ❤ UCBAD