Research Article
BibTex RIS Cite

The New Iterative Approximating of Endpoints of Multivalued Nonexpansive Mappings in Banach Spaces

Year 2022, , 64 - 68, 30.06.2022
https://doi.org/10.32323/ujma.1004517

Abstract

The purpose of this paper is to introduce the new iteration process to approximate endpoints of multivalued nonexpansive mappings in Banach space. We prove weak and strong convergence theorems of proposed iterative scheme under some suitable assumptions in the framework of a uniformly convex Banach space.

References

  • [1] J. P. Aubin, J. Siegel, Fixed points and stationary points of dissipative multivalued maps, Proc. Am. Math. Soc., 78(3) (1980), 391-398.
  • [2] H. W. Corley, Some hybrid fixed point theorems related to optimization, J. Math. Anal. Appl., 120(2) (1986), 528-532.
  • [3] B. Panyanak, Approximating endpoints of multi-valued nonexpansive mappings in Banach spaces, J. Fixed Point Theory Appl., 20(2) (2018), Article ID: 77, 8 pages, doi:10.1007/s11784-018-0564-z.
  • [4] T. Laokul, Browder’s convergence theorem for multivalued mappings in Banach spaces without the endpoint condition, Abstract and Applied Analysis, 2020 (2020), Article ID: 6150398, 7 pages, doi:10.1155/2020/6150398.
  • [5] T. Abdeljawad, K. Ullah, J. Ahmad, N. Mlaiki, Iterative approximation of endpoints for multivalued mappings in Banach spaces, Journal of Function Spaces, 2020 (2020), Article ID: 2179059, doi:10.1155/2020/2179059.
  • [6] K. Ullah, J. Ahmad, M. Arshad, M. Sen, M. S. U. Khan, Approximating stationary point of multivalued generalized nonexpansive mappings in Banach spaces, Advances in Mathematical Physics, 2020 (2020), Article ID: 9086078, 6 pages, doi:10.1155/2020/9086078.
  • [7] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73(4)(1967), 591-597.
  • [8] H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Analysis: Theory, Methods & Applications, 16(12) (1991), 1127-1138, doi:10.1016/0362-546X(91)90200-K.
  • [9] B. Panyanak, Mann and Ishikawa iterative processes for multivalued mappings in Banach spaces, Comp. Math. Appl., 54(6) (2007), 872-877 doi:10.1016/j.camwa.2007.03.012.
  • [10] B. Panyanak, Endpoints of multivalued nonexpansive mappings in geodesic spaces, Fixed Point Theory Appl., 2015, Article ID: 147, 11 pages, doi:10.1186/s13663-015-0398-y.
  • [11] B. Panyanak, The demiclosed principle for multi-valued nonexpansive mappings in Banach spaces. J. Nonlinear Convex Anal., 17(10) (2016), 2063-2070.
  • [12] P. Chuadchawna, A Farajzadeh, A. Kaewcharoen, Convergence theorems and approximating endpoints for multivalued Suzuki mappings in hyperbolics spaces, J. Comp. Anal. Appl., 28(5) (2020), 903-916.
Year 2022, , 64 - 68, 30.06.2022
https://doi.org/10.32323/ujma.1004517

Abstract

References

  • [1] J. P. Aubin, J. Siegel, Fixed points and stationary points of dissipative multivalued maps, Proc. Am. Math. Soc., 78(3) (1980), 391-398.
  • [2] H. W. Corley, Some hybrid fixed point theorems related to optimization, J. Math. Anal. Appl., 120(2) (1986), 528-532.
  • [3] B. Panyanak, Approximating endpoints of multi-valued nonexpansive mappings in Banach spaces, J. Fixed Point Theory Appl., 20(2) (2018), Article ID: 77, 8 pages, doi:10.1007/s11784-018-0564-z.
  • [4] T. Laokul, Browder’s convergence theorem for multivalued mappings in Banach spaces without the endpoint condition, Abstract and Applied Analysis, 2020 (2020), Article ID: 6150398, 7 pages, doi:10.1155/2020/6150398.
  • [5] T. Abdeljawad, K. Ullah, J. Ahmad, N. Mlaiki, Iterative approximation of endpoints for multivalued mappings in Banach spaces, Journal of Function Spaces, 2020 (2020), Article ID: 2179059, doi:10.1155/2020/2179059.
  • [6] K. Ullah, J. Ahmad, M. Arshad, M. Sen, M. S. U. Khan, Approximating stationary point of multivalued generalized nonexpansive mappings in Banach spaces, Advances in Mathematical Physics, 2020 (2020), Article ID: 9086078, 6 pages, doi:10.1155/2020/9086078.
  • [7] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73(4)(1967), 591-597.
  • [8] H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Analysis: Theory, Methods & Applications, 16(12) (1991), 1127-1138, doi:10.1016/0362-546X(91)90200-K.
  • [9] B. Panyanak, Mann and Ishikawa iterative processes for multivalued mappings in Banach spaces, Comp. Math. Appl., 54(6) (2007), 872-877 doi:10.1016/j.camwa.2007.03.012.
  • [10] B. Panyanak, Endpoints of multivalued nonexpansive mappings in geodesic spaces, Fixed Point Theory Appl., 2015, Article ID: 147, 11 pages, doi:10.1186/s13663-015-0398-y.
  • [11] B. Panyanak, The demiclosed principle for multi-valued nonexpansive mappings in Banach spaces. J. Nonlinear Convex Anal., 17(10) (2016), 2063-2070.
  • [12] P. Chuadchawna, A Farajzadeh, A. Kaewcharoen, Convergence theorems and approximating endpoints for multivalued Suzuki mappings in hyperbolics spaces, J. Comp. Anal. Appl., 28(5) (2020), 903-916.
There are 12 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Makbule Kaplan 0000-0002-7962-702X

Publication Date June 30, 2022
Submission Date October 4, 2021
Acceptance Date March 1, 2022
Published in Issue Year 2022

Cite

APA Kaplan, M. (2022). The New Iterative Approximating of Endpoints of Multivalued Nonexpansive Mappings in Banach Spaces. Universal Journal of Mathematics and Applications, 5(2), 64-68. https://doi.org/10.32323/ujma.1004517
AMA Kaplan M. The New Iterative Approximating of Endpoints of Multivalued Nonexpansive Mappings in Banach Spaces. Univ. J. Math. Appl. June 2022;5(2):64-68. doi:10.32323/ujma.1004517
Chicago Kaplan, Makbule. “The New Iterative Approximating of Endpoints of Multivalued Nonexpansive Mappings in Banach Spaces”. Universal Journal of Mathematics and Applications 5, no. 2 (June 2022): 64-68. https://doi.org/10.32323/ujma.1004517.
EndNote Kaplan M (June 1, 2022) The New Iterative Approximating of Endpoints of Multivalued Nonexpansive Mappings in Banach Spaces. Universal Journal of Mathematics and Applications 5 2 64–68.
IEEE M. Kaplan, “The New Iterative Approximating of Endpoints of Multivalued Nonexpansive Mappings in Banach Spaces”, Univ. J. Math. Appl., vol. 5, no. 2, pp. 64–68, 2022, doi: 10.32323/ujma.1004517.
ISNAD Kaplan, Makbule. “The New Iterative Approximating of Endpoints of Multivalued Nonexpansive Mappings in Banach Spaces”. Universal Journal of Mathematics and Applications 5/2 (June 2022), 64-68. https://doi.org/10.32323/ujma.1004517.
JAMA Kaplan M. The New Iterative Approximating of Endpoints of Multivalued Nonexpansive Mappings in Banach Spaces. Univ. J. Math. Appl. 2022;5:64–68.
MLA Kaplan, Makbule. “The New Iterative Approximating of Endpoints of Multivalued Nonexpansive Mappings in Banach Spaces”. Universal Journal of Mathematics and Applications, vol. 5, no. 2, 2022, pp. 64-68, doi:10.32323/ujma.1004517.
Vancouver Kaplan M. The New Iterative Approximating of Endpoints of Multivalued Nonexpansive Mappings in Banach Spaces. Univ. J. Math. Appl. 2022;5(2):64-8.

 23181

Universal Journal of Mathematics and Applications 

29207              

Creative Commons License  The published articles in UJMA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.