Research Article
BibTex RIS Cite

Petrie Paths in Triangular Normalizer Maps

Year 2022, , 89 - 95, 30.09.2022
https://doi.org/10.32323/ujma.1150466

Abstract

This study is devoted to investigate the Petrie paths in the normalizer maps and regular triangular maps corresponding to the subgroups $\Gamma_0(N)$ of the modular group $\Gamma$. We show that each regular triangular map admits a closed Petrie path. Thus, for each regular map, we find the Petrie length of the corresponding map.

References

  • [1] B. Schoeneberg, Elliptic Modular Functions, Springer, Berlin, 1974.
  • [2] N. Yazıcı Go¨zu¨tok, B. O¨ . Gu¨ler, Suborbital graphs for the group GC(N), Bull. Iran. Math. Soc., 45 (2019), 593-605.
  • [3] Y. Kesicio˘glu, M. Akbas¸, On suborbital graphs for the group G3, Bull. Iran. Math. Soc., 46 (2020), 1731-1744.
  • [4] B. O¨ . Gu¨ler, M. Bes¸enk, A.H. Deg˘er, S. Kader, Elliptic elements and circuits in suborbital graphs, Hacettepe J. Math. Stat., 40 (2011), 203-210.
  • [5] P. Jaipong, W. Promduang, K. Chaichana, Suborbital graphs of the congruence subgroup G0(N), Beitr. Algebra Geom., 60 (2019), 181-192.
  • [6] P. Jaipong, W. Tapanyo, Generalized classes of suborbital graphs for the congruence subgroups of the modular group, Algebra Discret. Math., 27 (2019), 20-36.
  • [7] M. Akbas¸, D. Singerman, Onsuborbital graphs for the modular group, Bull. London Math. Soc., 33 (2001), 647-652.
  • [8] N. Yazıcı Go¨zu¨tok, U. Go¨zu¨tok, B. O¨ . Gu¨ler, Maps corresponding to the subgroups G0(N) of the modular group, Graphs Combin., 35 (2019), 1695-1705.
  • [9] N. Yazıcı G¨oz¨utok, Normalizer maps modulo N, Mathematics, 10 (2022), 1046.
  • [10] J. H. Conway, S. P. Norton, Monstrous moonshine, Bull. London Math. Soc., 11 (1977), 308-339.
  • [11] M. Akbas¸, D. Singerman, The signature of the normalizer of G0(N), Lond. Math. Soc. Lect. Note Ser., 165 (1992), 77-86.
  • [12] D. Singerman, J. Strudwick, Petrie polygons, Fibonacci sequences and Farey maps, Ars Math. Contemp., 10 (2016), 349-357.
  • [13] D. D. Wall, Fibonacci series modulo m, Amer. Math. Monthly, 67 (1960), 525-532.
Year 2022, , 89 - 95, 30.09.2022
https://doi.org/10.32323/ujma.1150466

Abstract

References

  • [1] B. Schoeneberg, Elliptic Modular Functions, Springer, Berlin, 1974.
  • [2] N. Yazıcı Go¨zu¨tok, B. O¨ . Gu¨ler, Suborbital graphs for the group GC(N), Bull. Iran. Math. Soc., 45 (2019), 593-605.
  • [3] Y. Kesicio˘glu, M. Akbas¸, On suborbital graphs for the group G3, Bull. Iran. Math. Soc., 46 (2020), 1731-1744.
  • [4] B. O¨ . Gu¨ler, M. Bes¸enk, A.H. Deg˘er, S. Kader, Elliptic elements and circuits in suborbital graphs, Hacettepe J. Math. Stat., 40 (2011), 203-210.
  • [5] P. Jaipong, W. Promduang, K. Chaichana, Suborbital graphs of the congruence subgroup G0(N), Beitr. Algebra Geom., 60 (2019), 181-192.
  • [6] P. Jaipong, W. Tapanyo, Generalized classes of suborbital graphs for the congruence subgroups of the modular group, Algebra Discret. Math., 27 (2019), 20-36.
  • [7] M. Akbas¸, D. Singerman, Onsuborbital graphs for the modular group, Bull. London Math. Soc., 33 (2001), 647-652.
  • [8] N. Yazıcı Go¨zu¨tok, U. Go¨zu¨tok, B. O¨ . Gu¨ler, Maps corresponding to the subgroups G0(N) of the modular group, Graphs Combin., 35 (2019), 1695-1705.
  • [9] N. Yazıcı G¨oz¨utok, Normalizer maps modulo N, Mathematics, 10 (2022), 1046.
  • [10] J. H. Conway, S. P. Norton, Monstrous moonshine, Bull. London Math. Soc., 11 (1977), 308-339.
  • [11] M. Akbas¸, D. Singerman, The signature of the normalizer of G0(N), Lond. Math. Soc. Lect. Note Ser., 165 (1992), 77-86.
  • [12] D. Singerman, J. Strudwick, Petrie polygons, Fibonacci sequences and Farey maps, Ars Math. Contemp., 10 (2016), 349-357.
  • [13] D. D. Wall, Fibonacci series modulo m, Amer. Math. Monthly, 67 (1960), 525-532.
There are 13 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Nazlı Yazıcı Gözütok 0000-0002-3645-0623

Publication Date September 30, 2022
Submission Date July 28, 2022
Acceptance Date September 14, 2022
Published in Issue Year 2022

Cite

APA Yazıcı Gözütok, N. (2022). Petrie Paths in Triangular Normalizer Maps. Universal Journal of Mathematics and Applications, 5(3), 89-95. https://doi.org/10.32323/ujma.1150466
AMA Yazıcı Gözütok N. Petrie Paths in Triangular Normalizer Maps. Univ. J. Math. Appl. September 2022;5(3):89-95. doi:10.32323/ujma.1150466
Chicago Yazıcı Gözütok, Nazlı. “Petrie Paths in Triangular Normalizer Maps”. Universal Journal of Mathematics and Applications 5, no. 3 (September 2022): 89-95. https://doi.org/10.32323/ujma.1150466.
EndNote Yazıcı Gözütok N (September 1, 2022) Petrie Paths in Triangular Normalizer Maps. Universal Journal of Mathematics and Applications 5 3 89–95.
IEEE N. Yazıcı Gözütok, “Petrie Paths in Triangular Normalizer Maps”, Univ. J. Math. Appl., vol. 5, no. 3, pp. 89–95, 2022, doi: 10.32323/ujma.1150466.
ISNAD Yazıcı Gözütok, Nazlı. “Petrie Paths in Triangular Normalizer Maps”. Universal Journal of Mathematics and Applications 5/3 (September 2022), 89-95. https://doi.org/10.32323/ujma.1150466.
JAMA Yazıcı Gözütok N. Petrie Paths in Triangular Normalizer Maps. Univ. J. Math. Appl. 2022;5:89–95.
MLA Yazıcı Gözütok, Nazlı. “Petrie Paths in Triangular Normalizer Maps”. Universal Journal of Mathematics and Applications, vol. 5, no. 3, 2022, pp. 89-95, doi:10.32323/ujma.1150466.
Vancouver Yazıcı Gözütok N. Petrie Paths in Triangular Normalizer Maps. Univ. J. Math. Appl. 2022;5(3):89-95.

 23181

Universal Journal of Mathematics and Applications 

29207              

Creative Commons License  The published articles in UJMA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.