Research Article
BibTex RIS Cite

On Multi-G-Metric Spaces

Year 2023, , 91 - 99, 30.09.2023
https://doi.org/10.32323/ujma.1297362

Abstract

Multisets have many applications in a variety of fields today, including computer science, medicine, banking, engineering, information storage, and information analysis. In this paper, we present a new generalized multi-G-metric space, a multi-G-metric space. We investigate some of its fundamental details, connections, and topological characteristics.

Supporting Institution

Ege University Scientific Research Projects Coordination Unit

Project Number

FM-YLT-2022-23913

Thanks

We would like to thank Ege University for its support within the scope of Ege University Scientific Research Project (FM-YLT-2022-23913) in order to carry out these studies.

References

  • [1] W. D. Blizard, Mset theory, Notre Dame J. Form. Log., 30(1) (1989), 36-66.
  • [2] W. D. Blizard, Real-valued multisets and fuzzy sets, Fuzzy Sets Syst., 33(1), (1989), 77-97.
  • [3] G. F. Clements, On mset k-families, Discrete Math., 69(2) (1988), 153-164.
  • [4] M. Conder, S. Marshall, A. M. Slinko, Orders on multisets and discrete cones, Order-A Journal on The Theory of Ordered Sets and Its Applications, 24 (2007), 277-296.
  • [5] D. Singh, A. M. Ibrahim, T. Yohana, J. N. Singh, Some combinatorics of multisets, Int. J. Math. Educ. Sci. Technol., 34(4) (2003), 489–499.
  • [6] D. Singh, A. M. Ibrahim, T. Yohana, J. N. Singh, An overview of the applications of multisets, Novi Sad J. Math., 37(2) (2007), 73–92.
  • [7] D. Singh, A. M. Ibrahim, T. Yohana, J. N. Singh, Complementation in mset theory, Int. Math. Forum, 6(38) (2011), 1877–1884.
  • [8] Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7(2) (2006), 289-297.
  • [9] A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst., 64 (1994), 395-399.
  • [10] L. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468-1476.
  • [11] S. Das, R. Roy, An introduction to multi metric spaces, Adv. Dyn. Syst. Appl., 16(2) (2021), 605-618.
  • [12] S. Das, R. Roy, Some topological properties of multi metric spaces, J. Math. Comput. Sci., 11 (2021), 7253-7268.
  • [13] K. P. Girish, S. J. John, Mset topologies induced by mset relations, Inf. Sci., 188 (2012), 298-313.
Year 2023, , 91 - 99, 30.09.2023
https://doi.org/10.32323/ujma.1297362

Abstract

Project Number

FM-YLT-2022-23913

References

  • [1] W. D. Blizard, Mset theory, Notre Dame J. Form. Log., 30(1) (1989), 36-66.
  • [2] W. D. Blizard, Real-valued multisets and fuzzy sets, Fuzzy Sets Syst., 33(1), (1989), 77-97.
  • [3] G. F. Clements, On mset k-families, Discrete Math., 69(2) (1988), 153-164.
  • [4] M. Conder, S. Marshall, A. M. Slinko, Orders on multisets and discrete cones, Order-A Journal on The Theory of Ordered Sets and Its Applications, 24 (2007), 277-296.
  • [5] D. Singh, A. M. Ibrahim, T. Yohana, J. N. Singh, Some combinatorics of multisets, Int. J. Math. Educ. Sci. Technol., 34(4) (2003), 489–499.
  • [6] D. Singh, A. M. Ibrahim, T. Yohana, J. N. Singh, An overview of the applications of multisets, Novi Sad J. Math., 37(2) (2007), 73–92.
  • [7] D. Singh, A. M. Ibrahim, T. Yohana, J. N. Singh, Complementation in mset theory, Int. Math. Forum, 6(38) (2011), 1877–1884.
  • [8] Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7(2) (2006), 289-297.
  • [9] A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst., 64 (1994), 395-399.
  • [10] L. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468-1476.
  • [11] S. Das, R. Roy, An introduction to multi metric spaces, Adv. Dyn. Syst. Appl., 16(2) (2021), 605-618.
  • [12] S. Das, R. Roy, Some topological properties of multi metric spaces, J. Math. Comput. Sci., 11 (2021), 7253-7268.
  • [13] K. P. Girish, S. J. John, Mset topologies induced by mset relations, Inf. Sci., 188 (2012), 298-313.
There are 13 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Ecemnur Mutlu 0000-0002-8788-8000

Ayşegül Çaksu Güler 0000-0002-6811-9919

Project Number FM-YLT-2022-23913
Early Pub Date September 18, 2023
Publication Date September 30, 2023
Submission Date May 15, 2023
Acceptance Date July 29, 2023
Published in Issue Year 2023

Cite

APA Mutlu, E., & Çaksu Güler, A. (2023). On Multi-G-Metric Spaces. Universal Journal of Mathematics and Applications, 6(3), 91-99. https://doi.org/10.32323/ujma.1297362
AMA Mutlu E, Çaksu Güler A. On Multi-G-Metric Spaces. Univ. J. Math. Appl. September 2023;6(3):91-99. doi:10.32323/ujma.1297362
Chicago Mutlu, Ecemnur, and Ayşegül Çaksu Güler. “On Multi-G-Metric Spaces”. Universal Journal of Mathematics and Applications 6, no. 3 (September 2023): 91-99. https://doi.org/10.32323/ujma.1297362.
EndNote Mutlu E, Çaksu Güler A (September 1, 2023) On Multi-G-Metric Spaces. Universal Journal of Mathematics and Applications 6 3 91–99.
IEEE E. Mutlu and A. Çaksu Güler, “On Multi-G-Metric Spaces”, Univ. J. Math. Appl., vol. 6, no. 3, pp. 91–99, 2023, doi: 10.32323/ujma.1297362.
ISNAD Mutlu, Ecemnur - Çaksu Güler, Ayşegül. “On Multi-G-Metric Spaces”. Universal Journal of Mathematics and Applications 6/3 (September 2023), 91-99. https://doi.org/10.32323/ujma.1297362.
JAMA Mutlu E, Çaksu Güler A. On Multi-G-Metric Spaces. Univ. J. Math. Appl. 2023;6:91–99.
MLA Mutlu, Ecemnur and Ayşegül Çaksu Güler. “On Multi-G-Metric Spaces”. Universal Journal of Mathematics and Applications, vol. 6, no. 3, 2023, pp. 91-99, doi:10.32323/ujma.1297362.
Vancouver Mutlu E, Çaksu Güler A. On Multi-G-Metric Spaces. Univ. J. Math. Appl. 2023;6(3):91-9.

 23181

Universal Journal of Mathematics and Applications 

29207              

Creative Commons License  The published articles in UJMA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.