Research Article
BibTex RIS Cite

The New Class $L_{p,\Phi}$ of $s$-Type Operators

Year 2023, , 162 - 169, 18.12.2023
https://doi.org/10.32323/ujma.1378917

Abstract

In this study, the class of $s$-type $\ell_{p}( \Phi )$ operators is introduced and it is shown that $L_{p,\Phi}$ is a quasi-Banach operator ideal. Also, some other classes are defined by using approximation, Gelfand, Kolmogorov, Weyl, Chang, and Hilbert number sequences. Then, some properties are examined.

References

  • [1] A. Maji, P. D. Srivastava, On operator ideals using weighted Cesaro sequence space, Egyptian Math. Soc., 22(3) (2014), 446-452.
  • [2] A. Grothendieck, Produits tensoriels topologiques et espaces nucl´eaires, Amer. Math. Soc., 16 (1955).
  • [3] E. E. Kara, M. ˙Ilkhan, On a new class of s-type operators, Konuralp J. Math., 3(1) (2015), 1-11.
  • [4] A. Maji, P. D. Srivastava, Some class of operator ideals, Int. J. Pure Appl. Math., 83(5) (2013), 731-740.
  • [5] A. Maji, P. D. Srivastava, Some results of operator ideals on s􀀀type jA; pj operators, Tamkang J. Math., 45(2) (2014), 119-136.
  • [6] N. Şimşek, V. Karakaya, H. Polat, Operators ideals of generalized modular spaces of Cesaro type defined by weighted means, J. Comput. Anal. Appl., 19(1) (2015), 804-811.
  • [7] E. Erdoğan, V. Karakaya, Operator ideal of s-type operators using weighted mean sequence space, Carpathian J. Math., 33(3) (2017), 311-318.
  • [8] P. Zengin Alp, E. E. Kara, A new class of operator ideals on the block sequence space lp(E), Adv. Appl. Math. Sci. 18(2) (2018), 205-217.
  • [9] E. Schmidt, Zur theorie der linearen und nichtlinearen integralgleichungen, Math. Ann., 63(4) (1907), 433–476.
  • [10] A. Pietsch, Einigie neu klassen von kompakten linearen abbildungen, Revue Roum. Math. Pures et Appl., 8 (1963), 427-447.
  • [11] A. Pietsch, s􀀀Numbers of operators in Banach spaces, Studia Math., 51(3) (1974), 201-223.
  • [12] A. Pietsch, Operator Ideals, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978.
  • [13] B. Carl, A. Hinrichs, On s-numbers and Weyl inequalities of operators in Banach spaces, Bull. Lond. Math. Soc., 41(2) (2009), 332-340.
  • [14] A. Pietsch, Eigenvalues and s􀀀numbers, Cambridge University Press, New York, 1986.
  • [15] I. J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxford, 18(2) (1967), 345-355.
  • [16] G. Constantin, Operators of ces-p type, Rend. Acc. Naz. Lincei., 52(8) (1972), 875-878.
  • [17] N. Tita, On Stolz mappings, Math. Japonica, 26(4) (1981), 495–496.
  • [18] E. Kovac, On f convergence and f density, Mathematica Slovaca, 55 (2005), 329-351.
  • [19] M. ˙Ilkhan, A new Banach space defined by Euler totient matrix operator, Oper. Matrices, 13(2) (2019), 527-544.
Year 2023, , 162 - 169, 18.12.2023
https://doi.org/10.32323/ujma.1378917

Abstract

References

  • [1] A. Maji, P. D. Srivastava, On operator ideals using weighted Cesaro sequence space, Egyptian Math. Soc., 22(3) (2014), 446-452.
  • [2] A. Grothendieck, Produits tensoriels topologiques et espaces nucl´eaires, Amer. Math. Soc., 16 (1955).
  • [3] E. E. Kara, M. ˙Ilkhan, On a new class of s-type operators, Konuralp J. Math., 3(1) (2015), 1-11.
  • [4] A. Maji, P. D. Srivastava, Some class of operator ideals, Int. J. Pure Appl. Math., 83(5) (2013), 731-740.
  • [5] A. Maji, P. D. Srivastava, Some results of operator ideals on s􀀀type jA; pj operators, Tamkang J. Math., 45(2) (2014), 119-136.
  • [6] N. Şimşek, V. Karakaya, H. Polat, Operators ideals of generalized modular spaces of Cesaro type defined by weighted means, J. Comput. Anal. Appl., 19(1) (2015), 804-811.
  • [7] E. Erdoğan, V. Karakaya, Operator ideal of s-type operators using weighted mean sequence space, Carpathian J. Math., 33(3) (2017), 311-318.
  • [8] P. Zengin Alp, E. E. Kara, A new class of operator ideals on the block sequence space lp(E), Adv. Appl. Math. Sci. 18(2) (2018), 205-217.
  • [9] E. Schmidt, Zur theorie der linearen und nichtlinearen integralgleichungen, Math. Ann., 63(4) (1907), 433–476.
  • [10] A. Pietsch, Einigie neu klassen von kompakten linearen abbildungen, Revue Roum. Math. Pures et Appl., 8 (1963), 427-447.
  • [11] A. Pietsch, s􀀀Numbers of operators in Banach spaces, Studia Math., 51(3) (1974), 201-223.
  • [12] A. Pietsch, Operator Ideals, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978.
  • [13] B. Carl, A. Hinrichs, On s-numbers and Weyl inequalities of operators in Banach spaces, Bull. Lond. Math. Soc., 41(2) (2009), 332-340.
  • [14] A. Pietsch, Eigenvalues and s􀀀numbers, Cambridge University Press, New York, 1986.
  • [15] I. J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxford, 18(2) (1967), 345-355.
  • [16] G. Constantin, Operators of ces-p type, Rend. Acc. Naz. Lincei., 52(8) (1972), 875-878.
  • [17] N. Tita, On Stolz mappings, Math. Japonica, 26(4) (1981), 495–496.
  • [18] E. Kovac, On f convergence and f density, Mathematica Slovaca, 55 (2005), 329-351.
  • [19] M. ˙Ilkhan, A new Banach space defined by Euler totient matrix operator, Oper. Matrices, 13(2) (2019), 527-544.
There are 19 citations in total.

Details

Primary Language English
Subjects Pure Mathematics (Other)
Journal Section Articles
Authors

Pınar Zengin Alp 0000-0001-9699-7199

Early Pub Date December 11, 2023
Publication Date December 18, 2023
Submission Date October 20, 2023
Acceptance Date December 10, 2023
Published in Issue Year 2023

Cite

APA Zengin Alp, P. (2023). The New Class $L_{p,\Phi}$ of $s$-Type Operators. Universal Journal of Mathematics and Applications, 6(4), 162-169. https://doi.org/10.32323/ujma.1378917
AMA Zengin Alp P. The New Class $L_{p,\Phi}$ of $s$-Type Operators. Univ. J. Math. Appl. December 2023;6(4):162-169. doi:10.32323/ujma.1378917
Chicago Zengin Alp, Pınar. “The New Class $L_{p,\Phi}$ of $s$-Type Operators”. Universal Journal of Mathematics and Applications 6, no. 4 (December 2023): 162-69. https://doi.org/10.32323/ujma.1378917.
EndNote Zengin Alp P (December 1, 2023) The New Class $L_{p,\Phi}$ of $s$-Type Operators. Universal Journal of Mathematics and Applications 6 4 162–169.
IEEE P. Zengin Alp, “The New Class $L_{p,\Phi}$ of $s$-Type Operators”, Univ. J. Math. Appl., vol. 6, no. 4, pp. 162–169, 2023, doi: 10.32323/ujma.1378917.
ISNAD Zengin Alp, Pınar. “The New Class $L_{p,\Phi}$ of $s$-Type Operators”. Universal Journal of Mathematics and Applications 6/4 (December 2023), 162-169. https://doi.org/10.32323/ujma.1378917.
JAMA Zengin Alp P. The New Class $L_{p,\Phi}$ of $s$-Type Operators. Univ. J. Math. Appl. 2023;6:162–169.
MLA Zengin Alp, Pınar. “The New Class $L_{p,\Phi}$ of $s$-Type Operators”. Universal Journal of Mathematics and Applications, vol. 6, no. 4, 2023, pp. 162-9, doi:10.32323/ujma.1378917.
Vancouver Zengin Alp P. The New Class $L_{p,\Phi}$ of $s$-Type Operators. Univ. J. Math. Appl. 2023;6(4):162-9.

 23181

Universal Journal of Mathematics and Applications 

29207              

Creative Commons License  The published articles in UJMA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.