Research Article
BibTex RIS Cite
Year 2024, , 59 - 67, 23.05.2024
https://doi.org/10.32323/ujma.1405654

Abstract

References

  • [1] G. Leinhardt, R. Putnam, R. Hattrup, Analysis of Arithmetic for Mathematics Teaching, Routledge, (2020), available at http://books.google.ie/books?id=0GUPEAAAQBAJ&printsec=frontcover&dq=arithmetic+mathematical+operations&hl=&cd=7&source=gbs_api.
  • [2] J. French, Common School Arithmetic, BoD-Books on Demand, (2023), available at http://books.google.ie/books?id=qPLEEAAAQBAJ&printsec=frontcover&dq=dividend+and+divisor&hl=&cd=8&source=gbs_api.
  • [3] E. Hulbert, M. Petit, C. Ebby, E. Cunningham, R. Laird, A Focus on Multiplication and Division, Taylor and Francis, (2023), available at http://books.google.ie/books?id=9Fi-EAAAQBAJ&printsec=frontcover&dq=purpose+of+mathematical+division&hl=&cd=2&source=gbs_api.
  • [4] J. Midthun, Division, World Book, (2022), available at http://books.google.ie/books?id=spuczwEACAAJ&dq=purpose+of+mathematical+division&hl=&cd=1&source=gbs_api.
  • [5] E. Berkove, M. Brilleslyper, Summation formulas, generating functions, and polynomial division, Math. Mag., 95(5) (2022), 509–519, available at https://doi.org/10.1080/0025570x.2022.2127302.
  • [6] F. Laudano, Remainder and quotient without polynomial long division, Internat. J. Math. Ed. Sci. Tech., 52(7) (2020), 1113–1123, available at https://doi.org/10.1080/0020739x.2020.1821108.
  • [7] J. Abramson, College Algebra, (2018), available at http://books.google.ie/books?id=hGGatAEACAAJ&dq=polynomial+and+rational+functions&hl=&cd=3&source=gbs_api.
  • [8] E. Gselmann, M. Iqbal, Monomial functions, normal polynomials and polynomial equations, Aequationes Math., 29 (2023), 1059–1082, available at https://doi.org/10.1007/s00010-023-00972-z.
  • [9] A. Dubickas, Shifted power of a polynomial with integral roots, Math. Slovaca, 73(4) (2023), 883–886, available at https://doi.org/10.1515/ms-2023-0065.
  • [10] S. MacLane, G. Birkhoff, Algebra, Amer. Math. Soc., (2023), available at http://books.google.ie/books?id=wQvfEAAAQBAJ&pg=PA280&dq=Linear+factorization+theorem+for+plynomial&hl=&cd=6&source=gbs_api.
  • [11] I. Qasim, Refinement of some Bernstein type inequalities for rational functions, Issues of Anal., 29(1) (2022), 122–132, available at https://doi.org/10.15393/j3.art.2022.11350.
  • [12] P. Aluffi, Algebra: Chapter 0, Amer. Math. Soc., (2021), available at http://books.google.ie/books?id=h4dNEAAAQBAJ&printsec=frontcover&dq=polynomial+division+theorem&hl=&cd=9&source=gbs_api.
  • [13] Y. Kim, B. Lee, Partial fraction decomposition by repeated synthetic division, American Journal of Computational Mathematics, 06(02) (2016), 153–158, available at https://doi.org/10.4236/ajcm.2016.62016.
  • [14] M. Mohajerani, Division of Polynomials, (2020), available at http://books.google.ie/books?id=XHc9zgEACAAJ&dq=synthetic+divisions+for+polynomial&hl=&cd=1&source=gbs_api.
  • [15] L. Marecek, M. AnthonySmith, A. Mathis, Intermediate Algebra 2e, (2020), available at http://books.google.ie/books?id=8dEGzgEACAAJ&dq=synthetic+divisions+for+polynomial&hl=&cd=4&source=gbs_api.

Extension of Synthetic Division and Its Applications

Year 2024, , 59 - 67, 23.05.2024
https://doi.org/10.32323/ujma.1405654

Abstract

This study focused on \enquote{Extension of synthetic division and its applications}. The study was designed to show synthetic division and its extension and to point out the applications of synthetic division and its extension. The study found out that the concepts of polynomial and rational expressions in single variables are basic concepts to deal extension of synthetic division and its applications. Using the preliminary concepts, the concept of synthetic division is extended in this study. Also, the study found out that an extension of synthetic division is used for finding the oblique asymptote of the graph of a rational function, evaluating the integration of some rational functions, representing polynomial expression by factorial function in numerical analysis, and so on.

References

  • [1] G. Leinhardt, R. Putnam, R. Hattrup, Analysis of Arithmetic for Mathematics Teaching, Routledge, (2020), available at http://books.google.ie/books?id=0GUPEAAAQBAJ&printsec=frontcover&dq=arithmetic+mathematical+operations&hl=&cd=7&source=gbs_api.
  • [2] J. French, Common School Arithmetic, BoD-Books on Demand, (2023), available at http://books.google.ie/books?id=qPLEEAAAQBAJ&printsec=frontcover&dq=dividend+and+divisor&hl=&cd=8&source=gbs_api.
  • [3] E. Hulbert, M. Petit, C. Ebby, E. Cunningham, R. Laird, A Focus on Multiplication and Division, Taylor and Francis, (2023), available at http://books.google.ie/books?id=9Fi-EAAAQBAJ&printsec=frontcover&dq=purpose+of+mathematical+division&hl=&cd=2&source=gbs_api.
  • [4] J. Midthun, Division, World Book, (2022), available at http://books.google.ie/books?id=spuczwEACAAJ&dq=purpose+of+mathematical+division&hl=&cd=1&source=gbs_api.
  • [5] E. Berkove, M. Brilleslyper, Summation formulas, generating functions, and polynomial division, Math. Mag., 95(5) (2022), 509–519, available at https://doi.org/10.1080/0025570x.2022.2127302.
  • [6] F. Laudano, Remainder and quotient without polynomial long division, Internat. J. Math. Ed. Sci. Tech., 52(7) (2020), 1113–1123, available at https://doi.org/10.1080/0020739x.2020.1821108.
  • [7] J. Abramson, College Algebra, (2018), available at http://books.google.ie/books?id=hGGatAEACAAJ&dq=polynomial+and+rational+functions&hl=&cd=3&source=gbs_api.
  • [8] E. Gselmann, M. Iqbal, Monomial functions, normal polynomials and polynomial equations, Aequationes Math., 29 (2023), 1059–1082, available at https://doi.org/10.1007/s00010-023-00972-z.
  • [9] A. Dubickas, Shifted power of a polynomial with integral roots, Math. Slovaca, 73(4) (2023), 883–886, available at https://doi.org/10.1515/ms-2023-0065.
  • [10] S. MacLane, G. Birkhoff, Algebra, Amer. Math. Soc., (2023), available at http://books.google.ie/books?id=wQvfEAAAQBAJ&pg=PA280&dq=Linear+factorization+theorem+for+plynomial&hl=&cd=6&source=gbs_api.
  • [11] I. Qasim, Refinement of some Bernstein type inequalities for rational functions, Issues of Anal., 29(1) (2022), 122–132, available at https://doi.org/10.15393/j3.art.2022.11350.
  • [12] P. Aluffi, Algebra: Chapter 0, Amer. Math. Soc., (2021), available at http://books.google.ie/books?id=h4dNEAAAQBAJ&printsec=frontcover&dq=polynomial+division+theorem&hl=&cd=9&source=gbs_api.
  • [13] Y. Kim, B. Lee, Partial fraction decomposition by repeated synthetic division, American Journal of Computational Mathematics, 06(02) (2016), 153–158, available at https://doi.org/10.4236/ajcm.2016.62016.
  • [14] M. Mohajerani, Division of Polynomials, (2020), available at http://books.google.ie/books?id=XHc9zgEACAAJ&dq=synthetic+divisions+for+polynomial&hl=&cd=1&source=gbs_api.
  • [15] L. Marecek, M. AnthonySmith, A. Mathis, Intermediate Algebra 2e, (2020), available at http://books.google.ie/books?id=8dEGzgEACAAJ&dq=synthetic+divisions+for+polynomial&hl=&cd=4&source=gbs_api.
There are 15 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

Aschale Moges Belay 0009-0004-9351-1623

Snehashish Chakraverty 0000-0003-4857-644X

Early Pub Date March 30, 2024
Publication Date May 23, 2024
Submission Date December 16, 2023
Acceptance Date March 15, 2024
Published in Issue Year 2024

Cite

APA Belay, A. M., & Chakraverty, S. (2024). Extension of Synthetic Division and Its Applications. Universal Journal of Mathematics and Applications, 7(2), 59-67. https://doi.org/10.32323/ujma.1405654
AMA Belay AM, Chakraverty S. Extension of Synthetic Division and Its Applications. Univ. J. Math. Appl. May 2024;7(2):59-67. doi:10.32323/ujma.1405654
Chicago Belay, Aschale Moges, and Snehashish Chakraverty. “Extension of Synthetic Division and Its Applications”. Universal Journal of Mathematics and Applications 7, no. 2 (May 2024): 59-67. https://doi.org/10.32323/ujma.1405654.
EndNote Belay AM, Chakraverty S (May 1, 2024) Extension of Synthetic Division and Its Applications. Universal Journal of Mathematics and Applications 7 2 59–67.
IEEE A. M. Belay and S. Chakraverty, “Extension of Synthetic Division and Its Applications”, Univ. J. Math. Appl., vol. 7, no. 2, pp. 59–67, 2024, doi: 10.32323/ujma.1405654.
ISNAD Belay, Aschale Moges - Chakraverty, Snehashish. “Extension of Synthetic Division and Its Applications”. Universal Journal of Mathematics and Applications 7/2 (May 2024), 59-67. https://doi.org/10.32323/ujma.1405654.
JAMA Belay AM, Chakraverty S. Extension of Synthetic Division and Its Applications. Univ. J. Math. Appl. 2024;7:59–67.
MLA Belay, Aschale Moges and Snehashish Chakraverty. “Extension of Synthetic Division and Its Applications”. Universal Journal of Mathematics and Applications, vol. 7, no. 2, 2024, pp. 59-67, doi:10.32323/ujma.1405654.
Vancouver Belay AM, Chakraverty S. Extension of Synthetic Division and Its Applications. Univ. J. Math. Appl. 2024;7(2):59-67.

 23181

Universal Journal of Mathematics and Applications 

29207              

Creative Commons License  The published articles in UJMA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.