Research Article
BibTex RIS Cite

On Weighted Cauchy-Type Problem of Riemann-Liouville Fractional Differential Equations in Lebesgue Spaces with Variable Exponent

Year 2024, , 93 - 101, 23.05.2024
https://doi.org/10.32323/ujma.1409291

Abstract

This paper aims to investigate the existence, uniqueness, and stability properties for a class of fractional weighted Cauchy-type problem in the variable exponent Lebesgue space $L^{p(.)}$. The obtained results are set up by employing generalized intervals and piece-wise constant functions so that the $L^{p(.)}$ is transformed into the classical Lebesgue spaces.
Moreover, the usual Banach Contraction Principle is utilized, and the Ulam-Hyers (UH) stability is studied. At the final stage, we provide an example to support the accuracy of the obtained results.

References

  • [1] W. Orlicz, Über konjugierte exponentenfolgen, Studia Mathematica, 3(1) (1931), 200-211.
  • [2] H Nakano, Modular Semi-Ordered Spaces, Maruzen Co. Ltd., Tokyo, Japan, 1950.
  • [3] H. Nakano, Topology and Topological Linear Spaces, Maruzen Co., Ltd., Tokyo, 1951.
  • [4] I. I. Sharapudinov, Topology of the space Lp(t)(0;1), Matematicheskie Zametki, 26(4) (1979), 613-632.
  • [5] O. Kovavcik, J. Rakosnik, On spaces l p(x) and wk;p(x), Czechoslovak Math. J., 41(116) (1991), 592-618.
  • [6] X.L. Fan, D. Zhao, On the spaces l p(x)(w) and wk;p(x)(w), J. Math. Anal. Appl., 263(2) (2001), 424-446.
  • [7] R. Aboulaich, D. Meskine, A. Souissi, New diffusion models in image processing, Comput. Math. Appl., 56(4) (2008), 874-882.
  • [8] H. Attouch, G. Buttazzo, G. Michaille, Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization, MOS-SIAM series on optimization, 2014.
  • [9] E. M. Bollt, R. Chartrand, S. Esedoğlu, P. Schultz, K. R. Vixie, Graduated adaptive image denoising: Local compromise between total variation and isotropic diffusion, Adv. Comput. Math., 31 (2009), 61-85.
  • [10] Y. Chen, W. Guo, Q. Zeng, Y. Liu, A nonstandard smoothing in reconstruction of apparent diffusion coefficient profiles from diffusion weighted images, Inverse Probl. Imaging, 2(2) (2008), 205-224.
  • [11] Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66(4) (2006), 1383-1406.
  • [12] C. Derbazi, Z. Baitiche, M. Benchohra, A. Cabada, Initial value problem for nonlinear fractional differential equations with y-caputo derivative via monotone iterative technique, Axioms, 9(2) (2020), 57.
  • [13] J. G. Abdulahad, S. A. Murad, Local existence theorem of fractional differential equations in Lp space, Raf. J. Comp. Maths, 9(2) (2012), 71-78.
  • [14] R. P. Agarwal, V. Lupulescu, D. O’Regan, Lp solutions for a class of fractional integral equations, J. Integral Equ. Appl., 29(2) (2017), 251-270.
  • [15] S. Arshad, V. Lupulescu, D. O’Regan, Lp solutions for fractional integral equations,, Fract. Calc. Appl., 17(1) (2014), 259-276.
  • [16] B. Dong, Z. Fu, and J. Xu, Riesz-Kolmogorov theorem in variable exponent Lebesgue spaces and its applications to Riemann-Liouville fractional differential equations,, Sci. China Math., 61(10) (2018), 1807-1824.
  • [17] A. Refice, M. Inc, M. S. Hashemi, M. S. Souid, Boundary value problem of Riemann-Liouville fractional differential equations in the variable exponent Lebesgue spaces Lp (.), J. Geom. Phys., 178 (2022), 104554.
  • [18] A. Refice, M. S. Souid, Juan L.G. Guirao, H. Günerhan, Terminal value problem for Riemann-Liouville fractional differential equation in the variable exponent Lebesgue space Lp(:) , Math. Meth. Appl. Sci., (2023), 1–19.
  • [19] M. S. Souid, A. Refice, K. Sitthithakerngkiet, Stability of p (.)-integrable solutions for fractional boundary value problem via piecewise constant functions, Fractal Fract., 7(2) (2023), 198.
  • [20] K. Benia, M.S. Souid, F. Jarad, M. Alqudah, T. Abdeljawad, Boundary value problem of weighted fractional derivative of a function with a respect to another function of variable order, J. Inequal. Appl., 2023(2023), 127.
  • [21] D. O’Regan, R. Agarwal, S. Hristova, M. Abbas, Existence and stability results for differential equations with a variable-order generalized proportional Caputo fractional derivative, Mathematics, 12(2) (2024), 233.
  • [22] D. O’Regan, S. Hristova, R. Agarwal, Ulam-type stability results for variable orderY-tempered Caputo fractional differential equations, Fractal Fract., 8(1) (2023), 11.
  • [23] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier Science Tech, 2006.
  • [24] D.V. Cruz-Uribe, A. Fiorenza, Variable Lebesgue Spaces: Foundations and Harmonic Analysis, Applied and Numerical Harmonic Analysis, Springer Basel, 2013.
  • [25] H. Royden, P. Fitzpatrick, Real Analysis. Pearson Modern Classics for Advanced Mathematics Series, Pearson, 2017.
  • [26] V. S. Guliyev, S. G. Samko, Maximal, potential, and singular operators in the generalized variable exponent Morrey spaces on unbounded sets, J. Math. Sci., 193(2) (2013), 228-248.
  • [27] H. Rafeiro, S. Samko, Variable exponent campanato spaces, J. Math. Sci., 172(1) (2011), 143-164.
  • [28] A. Benkerrouche, M. S. Souid, K. Sitthithakerngkiet, A. Hakem, Implicit nonlinear fractional differential equations of variable order, Bound. Value Probl., 2021 (2021), 64.
  • [29] M. Benchohra, J. E. Lazreg, Existence and Ulam stability for nonlinear implicit fractional differential equations with Hadamard derivative, Stud. Univ. Babes-Bolyai Math., 62(1) (2017), 27-38.
Year 2024, , 93 - 101, 23.05.2024
https://doi.org/10.32323/ujma.1409291

Abstract

References

  • [1] W. Orlicz, Über konjugierte exponentenfolgen, Studia Mathematica, 3(1) (1931), 200-211.
  • [2] H Nakano, Modular Semi-Ordered Spaces, Maruzen Co. Ltd., Tokyo, Japan, 1950.
  • [3] H. Nakano, Topology and Topological Linear Spaces, Maruzen Co., Ltd., Tokyo, 1951.
  • [4] I. I. Sharapudinov, Topology of the space Lp(t)(0;1), Matematicheskie Zametki, 26(4) (1979), 613-632.
  • [5] O. Kovavcik, J. Rakosnik, On spaces l p(x) and wk;p(x), Czechoslovak Math. J., 41(116) (1991), 592-618.
  • [6] X.L. Fan, D. Zhao, On the spaces l p(x)(w) and wk;p(x)(w), J. Math. Anal. Appl., 263(2) (2001), 424-446.
  • [7] R. Aboulaich, D. Meskine, A. Souissi, New diffusion models in image processing, Comput. Math. Appl., 56(4) (2008), 874-882.
  • [8] H. Attouch, G. Buttazzo, G. Michaille, Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization, MOS-SIAM series on optimization, 2014.
  • [9] E. M. Bollt, R. Chartrand, S. Esedoğlu, P. Schultz, K. R. Vixie, Graduated adaptive image denoising: Local compromise between total variation and isotropic diffusion, Adv. Comput. Math., 31 (2009), 61-85.
  • [10] Y. Chen, W. Guo, Q. Zeng, Y. Liu, A nonstandard smoothing in reconstruction of apparent diffusion coefficient profiles from diffusion weighted images, Inverse Probl. Imaging, 2(2) (2008), 205-224.
  • [11] Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66(4) (2006), 1383-1406.
  • [12] C. Derbazi, Z. Baitiche, M. Benchohra, A. Cabada, Initial value problem for nonlinear fractional differential equations with y-caputo derivative via monotone iterative technique, Axioms, 9(2) (2020), 57.
  • [13] J. G. Abdulahad, S. A. Murad, Local existence theorem of fractional differential equations in Lp space, Raf. J. Comp. Maths, 9(2) (2012), 71-78.
  • [14] R. P. Agarwal, V. Lupulescu, D. O’Regan, Lp solutions for a class of fractional integral equations, J. Integral Equ. Appl., 29(2) (2017), 251-270.
  • [15] S. Arshad, V. Lupulescu, D. O’Regan, Lp solutions for fractional integral equations,, Fract. Calc. Appl., 17(1) (2014), 259-276.
  • [16] B. Dong, Z. Fu, and J. Xu, Riesz-Kolmogorov theorem in variable exponent Lebesgue spaces and its applications to Riemann-Liouville fractional differential equations,, Sci. China Math., 61(10) (2018), 1807-1824.
  • [17] A. Refice, M. Inc, M. S. Hashemi, M. S. Souid, Boundary value problem of Riemann-Liouville fractional differential equations in the variable exponent Lebesgue spaces Lp (.), J. Geom. Phys., 178 (2022), 104554.
  • [18] A. Refice, M. S. Souid, Juan L.G. Guirao, H. Günerhan, Terminal value problem for Riemann-Liouville fractional differential equation in the variable exponent Lebesgue space Lp(:) , Math. Meth. Appl. Sci., (2023), 1–19.
  • [19] M. S. Souid, A. Refice, K. Sitthithakerngkiet, Stability of p (.)-integrable solutions for fractional boundary value problem via piecewise constant functions, Fractal Fract., 7(2) (2023), 198.
  • [20] K. Benia, M.S. Souid, F. Jarad, M. Alqudah, T. Abdeljawad, Boundary value problem of weighted fractional derivative of a function with a respect to another function of variable order, J. Inequal. Appl., 2023(2023), 127.
  • [21] D. O’Regan, R. Agarwal, S. Hristova, M. Abbas, Existence and stability results for differential equations with a variable-order generalized proportional Caputo fractional derivative, Mathematics, 12(2) (2024), 233.
  • [22] D. O’Regan, S. Hristova, R. Agarwal, Ulam-type stability results for variable orderY-tempered Caputo fractional differential equations, Fractal Fract., 8(1) (2023), 11.
  • [23] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier Science Tech, 2006.
  • [24] D.V. Cruz-Uribe, A. Fiorenza, Variable Lebesgue Spaces: Foundations and Harmonic Analysis, Applied and Numerical Harmonic Analysis, Springer Basel, 2013.
  • [25] H. Royden, P. Fitzpatrick, Real Analysis. Pearson Modern Classics for Advanced Mathematics Series, Pearson, 2017.
  • [26] V. S. Guliyev, S. G. Samko, Maximal, potential, and singular operators in the generalized variable exponent Morrey spaces on unbounded sets, J. Math. Sci., 193(2) (2013), 228-248.
  • [27] H. Rafeiro, S. Samko, Variable exponent campanato spaces, J. Math. Sci., 172(1) (2011), 143-164.
  • [28] A. Benkerrouche, M. S. Souid, K. Sitthithakerngkiet, A. Hakem, Implicit nonlinear fractional differential equations of variable order, Bound. Value Probl., 2021 (2021), 64.
  • [29] M. Benchohra, J. E. Lazreg, Existence and Ulam stability for nonlinear implicit fractional differential equations with Hadamard derivative, Stud. Univ. Babes-Bolyai Math., 62(1) (2017), 27-38.
There are 29 citations in total.

Details

Primary Language English
Subjects Pure Mathematics (Other)
Journal Section Articles
Authors

Mokhtar Mokhtari 0000-0002-2504-5278

Ahmed Refice 0000-0002-8906-6211

Mohammed Said Souıd 0000-0002-4342-5231

Ali Yakar 0000-0003-1160-577X

Early Pub Date May 16, 2024
Publication Date May 23, 2024
Submission Date December 24, 2023
Acceptance Date May 2, 2024
Published in Issue Year 2024

Cite

APA Mokhtari, M., Refice, A., Souıd, M. S., Yakar, A. (2024). On Weighted Cauchy-Type Problem of Riemann-Liouville Fractional Differential Equations in Lebesgue Spaces with Variable Exponent. Universal Journal of Mathematics and Applications, 7(2), 93-101. https://doi.org/10.32323/ujma.1409291
AMA Mokhtari M, Refice A, Souıd MS, Yakar A. On Weighted Cauchy-Type Problem of Riemann-Liouville Fractional Differential Equations in Lebesgue Spaces with Variable Exponent. Univ. J. Math. Appl. May 2024;7(2):93-101. doi:10.32323/ujma.1409291
Chicago Mokhtari, Mokhtar, Ahmed Refice, Mohammed Said Souıd, and Ali Yakar. “On Weighted Cauchy-Type Problem of Riemann-Liouville Fractional Differential Equations in Lebesgue Spaces With Variable Exponent”. Universal Journal of Mathematics and Applications 7, no. 2 (May 2024): 93-101. https://doi.org/10.32323/ujma.1409291.
EndNote Mokhtari M, Refice A, Souıd MS, Yakar A (May 1, 2024) On Weighted Cauchy-Type Problem of Riemann-Liouville Fractional Differential Equations in Lebesgue Spaces with Variable Exponent. Universal Journal of Mathematics and Applications 7 2 93–101.
IEEE M. Mokhtari, A. Refice, M. S. Souıd, and A. Yakar, “On Weighted Cauchy-Type Problem of Riemann-Liouville Fractional Differential Equations in Lebesgue Spaces with Variable Exponent”, Univ. J. Math. Appl., vol. 7, no. 2, pp. 93–101, 2024, doi: 10.32323/ujma.1409291.
ISNAD Mokhtari, Mokhtar et al. “On Weighted Cauchy-Type Problem of Riemann-Liouville Fractional Differential Equations in Lebesgue Spaces With Variable Exponent”. Universal Journal of Mathematics and Applications 7/2 (May 2024), 93-101. https://doi.org/10.32323/ujma.1409291.
JAMA Mokhtari M, Refice A, Souıd MS, Yakar A. On Weighted Cauchy-Type Problem of Riemann-Liouville Fractional Differential Equations in Lebesgue Spaces with Variable Exponent. Univ. J. Math. Appl. 2024;7:93–101.
MLA Mokhtari, Mokhtar et al. “On Weighted Cauchy-Type Problem of Riemann-Liouville Fractional Differential Equations in Lebesgue Spaces With Variable Exponent”. Universal Journal of Mathematics and Applications, vol. 7, no. 2, 2024, pp. 93-101, doi:10.32323/ujma.1409291.
Vancouver Mokhtari M, Refice A, Souıd MS, Yakar A. On Weighted Cauchy-Type Problem of Riemann-Liouville Fractional Differential Equations in Lebesgue Spaces with Variable Exponent. Univ. J. Math. Appl. 2024;7(2):93-101.

 23181

Universal Journal of Mathematics and Applications 

29207              

Creative Commons License  The published articles in UJMA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.