Research Article
BibTex RIS Cite

LP-Kenmotsu Manifolds Admitting Bach Almost Solitons

Year 2024, , 102 - 110, 21.09.2024
https://doi.org/10.32323/ujma.1443527

Abstract

For a Lorentzian para-Kenmotsu manifold of dimension $m$ (briefly, ${(LPK)_{m}}$) admitting Bach almost soliton $(g,\zeta,\lambda)$, we explored the characteristics of the norm of Ricci operator. Besides, we gave the necessary condition for ${(LPK)_{m}}$ ($m\geq 4$) admitting Bach almost soliton to be an $\eta$-Einstein manifold. Afterwards, we proved that Bach almost solitons are always steady when a Lorentzian para-Kenmotsu manifold of dimension three has Bach almost soliton.

References

  • [1] I. Sato, On a structure similar to the almost contact structure, Tensor (N. S.), 30 (1976), 219-224.
  • [2] S. Kaneyuki, M. Kozai, Paracomplex structures and affine symmetric spaces, Tokyo J. Math., 8 (1985), 81-98.
  • [3] S. Kaneyuki, F. Williams, Almost paracontact and parahodge structures on manifolds, Nagoya Math. J., 99 (1985), 173-187.
  • [4] B.B. Sinha, K.L. Sai Prasad, A class of almost para contact metric manifolds, Bull. Calcutta Math. Soc., 87 (1995), 307-312.
  • [5] T. Q. Binh, L. Tamassy, U. C. De, M. Tarafdar, Some remarks on almost Kenmotsu manifolds, Maths. Pannonica, 13 (2002), 31-39.
  • [6] A. M. Blaga, Conformal and paracontactly geodesic transformations of almost paracontact metric structures, Facta Univ. Scr. Math. Inform., 35 (2020), 121-130.
  • [7] A. M. Blaga, M. Crasmareanu, Statistical structures in almost paracontact geometry, Bull. Iranian Math. Soc., 44 (2018), 1407-1413.
  • [8] G. Calvaruso, Homogeneous paracontact metric three-manifolds, Illinois J. Math., 55 (2011), 696-718.
  • [9] S. Dirik, M. Atceken, U. Yildirim, Anti invariant submanifolds of a normal para contact metric manifolds, Gulf J. Math., 10 (2021), 38-49.
  • [10] B. O’Neill, Semi-Riemannian Geometry with Application to Relativity, Pure and Applied Mathematics, Vol. 103, Academic Press, New York, 1983.
  • [11] V. R. Kaigorodov, The curvature structure of spacetime, Pro. Geom., 14 (1983), 177-202.
  • [12] A. K. Raychaudhuri, S. Banerji, A. Banerjee, General Relativity, Astrophysics and Cosmology, Springer- Verlag, 1992.
  • [13] A. Haseeb, R. Prasad, Certain results on Lorentzian para-Kenmotsu manifolds, Bol. Soc. Paran. Mat., 39 (2021), 201-220.
  • [14] A. Haseeb, R. Prasad, Some results on Lorentzian para-Kenmotsu manifolds, Bulletin of the Transilvania University of Brasov, Series III : Mathematics, Informatics, Physics, 13(62) (2020), 185-198.
  • [15] R. Bach, Zur Weylschen relativitatstheorie and der Weylschen Erweiterung des Krummungstensorbegriffs, Math. Z., 9 (1921), 110-135.
  • [16] Y. Wang, Cotton tensors on almost co-K¨ahler 3-manifolds, Ann. Polon. Math., 120 (2017), 135-148.
  • [17] J. Bergman, Conformal Einstein spaces and Bach tensor generalization in n-dimensions, Ph. D. Thesis, Link¨oping University, 2004.
  • [18] U. C. De, K. De, On a class of three-dimensional trans-Sasakian manifolds, Commun. Korean Math. Soc., 27 (2012), 795-808.
  • [19] U. C. De, G. Ghosh, J. B. Jun, P. Majhi, Some results on para Sasakian manifolds, Bull. Transilv. Univ. Brasov, Series III : Mathematics, Informatics, Physics, 11 (60) (2018), 49-63.
  • [20] U. C. De, A. Sardar, Classification of (k;m)-almost co-K¨ahler manifolds with vanishing Bach tensor and divergence free cotton tensor, Commun. Korean Math. Soc., 35 (2020), 1245-1254.
  • [21] H.I. Yoldas, Notes on h-Einstein solitons on para-Kenmotsu manifolds, Math. Method Appl. Sci., 46 (2023), 17632-17640.
  • [22] H. Fu, J. Peng, Rigidity theorems for compact Bach-flat manifolds with positive constant scalar curvature, Hokkaido Math. J., 47 (2018), 581-605.
  • [23] A. Ghosh, R. Sharma, Sasakian manifolds with purely transversal Bach tensor, J. Math. Phys., 58 (2017), 103502, 6 pp.
  • [24] P. Szekeres, Conformal tensors, Proc. R. Soc. Lond. Ser. A-Contain. Pap. Math. Phys., 304 (1968), 113-122.
  • [25] S. Das, S. Kar, Bach flows of product manifolds, Int. J. Geom. Methods Mod. Phys., 9 (2012), 1250039, 18 pp.
  • [26] I. Bakas, F. Bourliot, D. Lust, M. Petropoulos, Geometric flows in Horava-Lifshitz gravity, J. High Energy Phys., 2010 (2010), 1-58.
  • [27] E. Bahuaud, D. Helliwell, Short-time existence for some higher-order geometric flows, Commun. Partial Differ. Equ., 36 (2011), 2189-2207.
  • [28] H.-D. Cao, Q. Chen, On Bach-flat gradient shrinking Ricci solitons, Duke Math. J., 162 (2013), 1149-1169.
  • [29] P. T. Ho, Bach flow, J. Geom. Phys., 133 (2018), 1-9.
  • [30] D. Helliwell, Bach flow on homogeneous products, SIGMA Symmetry Integrability Geom. Methods Appl., 16 (2020), 35 pp.
  • [31] A. Ghosh, On Bach almost solitons, Beitr. Algebra Geom., 63 (2022), 45-54.
  • [32] K. Matsumoto, On Lorentzian paracontact manifolds, Bull. Yamagata Univ. Nat. Sci., 12 (1989), 151-156.
  • [33] R. Prasad, A. Haseeb, A. Verma, V. S. Yadav, A study of j-Ricci symmetric LP-Kenmotsu manifolds, Int. J. Maps Math., 7 (2024), 33-44.
  • [34] Pankaj, S. K. Chaubey, R. Prasad, Three dimensional Lorentzian para-Kenmotsu manifolds and Yamabe soliton, Honam Math. J., 43 (2021), 613-626.
  • [35] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, Springer-Verlag, 509, 1976.
  • [36] Li, Y., Haseeb, A., Ali, M., LP-Kenmotsu manifolds admitting h-Ricci solitons and spacetime, J. Math., 2022, Article ID 6605127, 10 pages.
Year 2024, , 102 - 110, 21.09.2024
https://doi.org/10.32323/ujma.1443527

Abstract

References

  • [1] I. Sato, On a structure similar to the almost contact structure, Tensor (N. S.), 30 (1976), 219-224.
  • [2] S. Kaneyuki, M. Kozai, Paracomplex structures and affine symmetric spaces, Tokyo J. Math., 8 (1985), 81-98.
  • [3] S. Kaneyuki, F. Williams, Almost paracontact and parahodge structures on manifolds, Nagoya Math. J., 99 (1985), 173-187.
  • [4] B.B. Sinha, K.L. Sai Prasad, A class of almost para contact metric manifolds, Bull. Calcutta Math. Soc., 87 (1995), 307-312.
  • [5] T. Q. Binh, L. Tamassy, U. C. De, M. Tarafdar, Some remarks on almost Kenmotsu manifolds, Maths. Pannonica, 13 (2002), 31-39.
  • [6] A. M. Blaga, Conformal and paracontactly geodesic transformations of almost paracontact metric structures, Facta Univ. Scr. Math. Inform., 35 (2020), 121-130.
  • [7] A. M. Blaga, M. Crasmareanu, Statistical structures in almost paracontact geometry, Bull. Iranian Math. Soc., 44 (2018), 1407-1413.
  • [8] G. Calvaruso, Homogeneous paracontact metric three-manifolds, Illinois J. Math., 55 (2011), 696-718.
  • [9] S. Dirik, M. Atceken, U. Yildirim, Anti invariant submanifolds of a normal para contact metric manifolds, Gulf J. Math., 10 (2021), 38-49.
  • [10] B. O’Neill, Semi-Riemannian Geometry with Application to Relativity, Pure and Applied Mathematics, Vol. 103, Academic Press, New York, 1983.
  • [11] V. R. Kaigorodov, The curvature structure of spacetime, Pro. Geom., 14 (1983), 177-202.
  • [12] A. K. Raychaudhuri, S. Banerji, A. Banerjee, General Relativity, Astrophysics and Cosmology, Springer- Verlag, 1992.
  • [13] A. Haseeb, R. Prasad, Certain results on Lorentzian para-Kenmotsu manifolds, Bol. Soc. Paran. Mat., 39 (2021), 201-220.
  • [14] A. Haseeb, R. Prasad, Some results on Lorentzian para-Kenmotsu manifolds, Bulletin of the Transilvania University of Brasov, Series III : Mathematics, Informatics, Physics, 13(62) (2020), 185-198.
  • [15] R. Bach, Zur Weylschen relativitatstheorie and der Weylschen Erweiterung des Krummungstensorbegriffs, Math. Z., 9 (1921), 110-135.
  • [16] Y. Wang, Cotton tensors on almost co-K¨ahler 3-manifolds, Ann. Polon. Math., 120 (2017), 135-148.
  • [17] J. Bergman, Conformal Einstein spaces and Bach tensor generalization in n-dimensions, Ph. D. Thesis, Link¨oping University, 2004.
  • [18] U. C. De, K. De, On a class of three-dimensional trans-Sasakian manifolds, Commun. Korean Math. Soc., 27 (2012), 795-808.
  • [19] U. C. De, G. Ghosh, J. B. Jun, P. Majhi, Some results on para Sasakian manifolds, Bull. Transilv. Univ. Brasov, Series III : Mathematics, Informatics, Physics, 11 (60) (2018), 49-63.
  • [20] U. C. De, A. Sardar, Classification of (k;m)-almost co-K¨ahler manifolds with vanishing Bach tensor and divergence free cotton tensor, Commun. Korean Math. Soc., 35 (2020), 1245-1254.
  • [21] H.I. Yoldas, Notes on h-Einstein solitons on para-Kenmotsu manifolds, Math. Method Appl. Sci., 46 (2023), 17632-17640.
  • [22] H. Fu, J. Peng, Rigidity theorems for compact Bach-flat manifolds with positive constant scalar curvature, Hokkaido Math. J., 47 (2018), 581-605.
  • [23] A. Ghosh, R. Sharma, Sasakian manifolds with purely transversal Bach tensor, J. Math. Phys., 58 (2017), 103502, 6 pp.
  • [24] P. Szekeres, Conformal tensors, Proc. R. Soc. Lond. Ser. A-Contain. Pap. Math. Phys., 304 (1968), 113-122.
  • [25] S. Das, S. Kar, Bach flows of product manifolds, Int. J. Geom. Methods Mod. Phys., 9 (2012), 1250039, 18 pp.
  • [26] I. Bakas, F. Bourliot, D. Lust, M. Petropoulos, Geometric flows in Horava-Lifshitz gravity, J. High Energy Phys., 2010 (2010), 1-58.
  • [27] E. Bahuaud, D. Helliwell, Short-time existence for some higher-order geometric flows, Commun. Partial Differ. Equ., 36 (2011), 2189-2207.
  • [28] H.-D. Cao, Q. Chen, On Bach-flat gradient shrinking Ricci solitons, Duke Math. J., 162 (2013), 1149-1169.
  • [29] P. T. Ho, Bach flow, J. Geom. Phys., 133 (2018), 1-9.
  • [30] D. Helliwell, Bach flow on homogeneous products, SIGMA Symmetry Integrability Geom. Methods Appl., 16 (2020), 35 pp.
  • [31] A. Ghosh, On Bach almost solitons, Beitr. Algebra Geom., 63 (2022), 45-54.
  • [32] K. Matsumoto, On Lorentzian paracontact manifolds, Bull. Yamagata Univ. Nat. Sci., 12 (1989), 151-156.
  • [33] R. Prasad, A. Haseeb, A. Verma, V. S. Yadav, A study of j-Ricci symmetric LP-Kenmotsu manifolds, Int. J. Maps Math., 7 (2024), 33-44.
  • [34] Pankaj, S. K. Chaubey, R. Prasad, Three dimensional Lorentzian para-Kenmotsu manifolds and Yamabe soliton, Honam Math. J., 43 (2021), 613-626.
  • [35] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, Springer-Verlag, 509, 1976.
  • [36] Li, Y., Haseeb, A., Ali, M., LP-Kenmotsu manifolds admitting h-Ricci solitons and spacetime, J. Math., 2022, Article ID 6605127, 10 pages.
There are 36 citations in total.

Details

Primary Language English
Subjects Pure Mathematics (Other)
Journal Section Articles
Authors

Rajendra Prasad 0000-0002-7502-0239

Abhinav Verma 0009-0004-7998-5224

Vindhyachal Singh Yadav 0009-0009-2810-2723

Abdul Haseeb 0000-0002-1175-6423

Mohd Bilal 0000-0002-6789-2678

Early Pub Date August 25, 2024
Publication Date September 21, 2024
Submission Date February 27, 2024
Acceptance Date May 12, 2024
Published in Issue Year 2024

Cite

APA Prasad, R., Verma, A., Yadav, V. S., Haseeb, A., et al. (2024). LP-Kenmotsu Manifolds Admitting Bach Almost Solitons. Universal Journal of Mathematics and Applications, 7(3), 102-110. https://doi.org/10.32323/ujma.1443527
AMA Prasad R, Verma A, Yadav VS, Haseeb A, Bilal M. LP-Kenmotsu Manifolds Admitting Bach Almost Solitons. Univ. J. Math. Appl. September 2024;7(3):102-110. doi:10.32323/ujma.1443527
Chicago Prasad, Rajendra, Abhinav Verma, Vindhyachal Singh Yadav, Abdul Haseeb, and Mohd Bilal. “LP-Kenmotsu Manifolds Admitting Bach Almost Solitons”. Universal Journal of Mathematics and Applications 7, no. 3 (September 2024): 102-10. https://doi.org/10.32323/ujma.1443527.
EndNote Prasad R, Verma A, Yadav VS, Haseeb A, Bilal M (September 1, 2024) LP-Kenmotsu Manifolds Admitting Bach Almost Solitons. Universal Journal of Mathematics and Applications 7 3 102–110.
IEEE R. Prasad, A. Verma, V. S. Yadav, A. Haseeb, and M. Bilal, “LP-Kenmotsu Manifolds Admitting Bach Almost Solitons”, Univ. J. Math. Appl., vol. 7, no. 3, pp. 102–110, 2024, doi: 10.32323/ujma.1443527.
ISNAD Prasad, Rajendra et al. “LP-Kenmotsu Manifolds Admitting Bach Almost Solitons”. Universal Journal of Mathematics and Applications 7/3 (September 2024), 102-110. https://doi.org/10.32323/ujma.1443527.
JAMA Prasad R, Verma A, Yadav VS, Haseeb A, Bilal M. LP-Kenmotsu Manifolds Admitting Bach Almost Solitons. Univ. J. Math. Appl. 2024;7:102–110.
MLA Prasad, Rajendra et al. “LP-Kenmotsu Manifolds Admitting Bach Almost Solitons”. Universal Journal of Mathematics and Applications, vol. 7, no. 3, 2024, pp. 102-10, doi:10.32323/ujma.1443527.
Vancouver Prasad R, Verma A, Yadav VS, Haseeb A, Bilal M. LP-Kenmotsu Manifolds Admitting Bach Almost Solitons. Univ. J. Math. Appl. 2024;7(3):102-10.

 23181

Universal Journal of Mathematics and Applications 

29207              

Creative Commons License  The published articles in UJMA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.