Year 2018,
, 171 - 177, 30.09.2018
Medjahed Djilali
,
Ali Hakem
References
- [1] M. BERBICHE, A. HAKEM, Necessary conditions for the existence and sufficient conditions for the nonexistence of solutions to a certain fractional telegraph equation. Memoirs on Differential Equations and Mathematical physics. vol 56, 2012, 37-55.
- [2] M. ESCOBEDO & H. A. LEVINE, Critical blow up and global existence numbers of a weakly coupled system of reaction-diffusion equation. Arch. Rational. Mech. Anal. 129 (1995),47-100.
- [3] A. Z. FINO, Critical exponent for damped wave equations with nonlinear memory. Nonlinear Analysis 74 (2011) 5495-5505.
- [4] A. Z. FINO, H. IBRAHIM & A. WEHBE, A blow-up result for a nonlinear damped wave equation in exterior domain: The critical case, Computers & Mathematics with Applications, Volume 73, Issue 11, (2017), pp. 2415-2420.
- [5] H. FUJITA, On the blowing up of solutions of the problem for ut = Du+u1+a , J. Fac. Sci.Univ. Tokyo 13 (1966), 109 - 124.
- [6] M. GUEDDA & M. KIRANE, Local and global nonexistence of solutions to semilinear evolution equations. Electronic Journal of Differential Equations, Conference 09 (2002), pp. 149-160.
- [7] B. GUO, X. PU & F. HUANG, Fractional Partial Differential Equations and Their Numerical Solutions. World Scientific Publishing Co. Pte. Ltd. Beijing, China (2011).
- [8] A. HAKEM, Nonexistence of weak solutions for evolution problems on RN , Bull. Belg. Math. Soc. 12 (2005), 73-82.
- [9] A. HAKEM & M. BERBICHE, On the blow-up of solutions to semi-linear wave models with fractional damping . IAENG International Journal of Applied Mathematics, (2011) 41:3, IJAM-41-3-05.
- [10] M. KIRANE, Y. LASKRI & N.-E.TATAR, Critical exponents of fujita type for certain evolution equations and systems with spation-temporal fractional derivatives.J. Math. Anal. Appl. 312 (2005) 488-501.
- [11] W. MINGXIN, Global existence and finite time blow up for a reaction-diffusion system. Z. Angew. Math. Phys. 51 (2000) 160-167.
- [12] T. OGAWA & H. TAKIDA, Non-existence of weak solutions to nonlinear damped wave equations in exterior domains, J. Nonliniear analysis 70 (2009), 3696-3701.
- [13] I. PODLUBNY, Fractional differential equations. Mathematics in Science and Engineering, vol 198, Academic Press, New York, 1999.
- [14] S.I. POHOZAEV & A. TESEI, Nonexistence of Local Solutions to Semilinear Partial Differential Inequalities, Nota Scientifica 01/28, Dip. Mat. Universit´a ”La Sapienza”, Roma (2001).
- [15] S. POHOZAEV & L. VERON, Blow up results for nonlinear hyperbolic enequalities, Ann. Scuola Norm. Sup. Pisa CI. Sci. (4) Vol. XXIX (2000), pp. 393-420.
- [16] C. POZRIKIDIS, The fractional Laplacian, Taylor & Francis Group, LLC /CRC Press, Boca Raton (USA), (2016).
- [17] S. G. SAMKO, A. A. KILBAS & O. I. MARICHEV, Fractional integrals and derivatives: Theory and applications. Gordan and Breach Sci. Publishers, Yverdon, 1993.
- [18] G.TODOROVA & B.YORDANOV, Critical Exponent for a Nonlinear Wave Equation with Damping. Journal of Differential Equations 174, 464-489 (2001).
- [19] Y. YAMAUCHI, Blow-up results for a reaction-deffusion system , Methods Appl. Anal. 13 (2006), 337 - 350.
- [20] Q. S. ZHANG, A blow up result for a nonlinear wave equation with damping: the critical case, C. R. Acad.Sci. paris, Volume 333, no.2, (2001), 109-114.
- [21] S-MU. ZHENG, Nonlinear evolution equations, Chapman & Hall/CRC Press, Florida (USA), (2004).
Nonexistence of global solutions to system of semi-linear fractional evolution equations
Year 2018,
, 171 - 177, 30.09.2018
Medjahed Djilali
,
Ali Hakem
Abstract
In this research we are interested to Cauchy problem for system of semi-linear fractional evolution equations. Some authors were concerned with studying of global existence of solutions for the hyperbolic nonlinear equations with a damping term. Our goal is to extend some results obtained by the authors, by studying the system of semi-linear hyperbolic equations with fractional damping term and fractional Laplacian .Thanks to the test functions method, we prove the nonexistence of nontrivial global weak solutions to the problem.
References
- [1] M. BERBICHE, A. HAKEM, Necessary conditions for the existence and sufficient conditions for the nonexistence of solutions to a certain fractional telegraph equation. Memoirs on Differential Equations and Mathematical physics. vol 56, 2012, 37-55.
- [2] M. ESCOBEDO & H. A. LEVINE, Critical blow up and global existence numbers of a weakly coupled system of reaction-diffusion equation. Arch. Rational. Mech. Anal. 129 (1995),47-100.
- [3] A. Z. FINO, Critical exponent for damped wave equations with nonlinear memory. Nonlinear Analysis 74 (2011) 5495-5505.
- [4] A. Z. FINO, H. IBRAHIM & A. WEHBE, A blow-up result for a nonlinear damped wave equation in exterior domain: The critical case, Computers & Mathematics with Applications, Volume 73, Issue 11, (2017), pp. 2415-2420.
- [5] H. FUJITA, On the blowing up of solutions of the problem for ut = Du+u1+a , J. Fac. Sci.Univ. Tokyo 13 (1966), 109 - 124.
- [6] M. GUEDDA & M. KIRANE, Local and global nonexistence of solutions to semilinear evolution equations. Electronic Journal of Differential Equations, Conference 09 (2002), pp. 149-160.
- [7] B. GUO, X. PU & F. HUANG, Fractional Partial Differential Equations and Their Numerical Solutions. World Scientific Publishing Co. Pte. Ltd. Beijing, China (2011).
- [8] A. HAKEM, Nonexistence of weak solutions for evolution problems on RN , Bull. Belg. Math. Soc. 12 (2005), 73-82.
- [9] A. HAKEM & M. BERBICHE, On the blow-up of solutions to semi-linear wave models with fractional damping . IAENG International Journal of Applied Mathematics, (2011) 41:3, IJAM-41-3-05.
- [10] M. KIRANE, Y. LASKRI & N.-E.TATAR, Critical exponents of fujita type for certain evolution equations and systems with spation-temporal fractional derivatives.J. Math. Anal. Appl. 312 (2005) 488-501.
- [11] W. MINGXIN, Global existence and finite time blow up for a reaction-diffusion system. Z. Angew. Math. Phys. 51 (2000) 160-167.
- [12] T. OGAWA & H. TAKIDA, Non-existence of weak solutions to nonlinear damped wave equations in exterior domains, J. Nonliniear analysis 70 (2009), 3696-3701.
- [13] I. PODLUBNY, Fractional differential equations. Mathematics in Science and Engineering, vol 198, Academic Press, New York, 1999.
- [14] S.I. POHOZAEV & A. TESEI, Nonexistence of Local Solutions to Semilinear Partial Differential Inequalities, Nota Scientifica 01/28, Dip. Mat. Universit´a ”La Sapienza”, Roma (2001).
- [15] S. POHOZAEV & L. VERON, Blow up results for nonlinear hyperbolic enequalities, Ann. Scuola Norm. Sup. Pisa CI. Sci. (4) Vol. XXIX (2000), pp. 393-420.
- [16] C. POZRIKIDIS, The fractional Laplacian, Taylor & Francis Group, LLC /CRC Press, Boca Raton (USA), (2016).
- [17] S. G. SAMKO, A. A. KILBAS & O. I. MARICHEV, Fractional integrals and derivatives: Theory and applications. Gordan and Breach Sci. Publishers, Yverdon, 1993.
- [18] G.TODOROVA & B.YORDANOV, Critical Exponent for a Nonlinear Wave Equation with Damping. Journal of Differential Equations 174, 464-489 (2001).
- [19] Y. YAMAUCHI, Blow-up results for a reaction-deffusion system , Methods Appl. Anal. 13 (2006), 337 - 350.
- [20] Q. S. ZHANG, A blow up result for a nonlinear wave equation with damping: the critical case, C. R. Acad.Sci. paris, Volume 333, no.2, (2001), 109-114.
- [21] S-MU. ZHENG, Nonlinear evolution equations, Chapman & Hall/CRC Press, Florida (USA), (2004).