[3] H. Endo, On the curvature tensor of nearly cosymplectic manifolds of constant j-sectional curvature. An. S¸tiint. Univ. Al. I. Cuza Ia¸si. Mat. 51(2)(2005),
439-454 .
[4] A. De Nicola, G. Dileo, I. Yudin, On nearly Sasakian and nearly cosymplectic manifolds, Ann. Mat., (2017), https://doi.org/10.1007/s10231-017-0671-2.
[5] D.E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Math., 203, Birkhauser Boston 2002.
[6] D.E. Blair, D.K. Showers, Almost Contact Manifolds with Killing Structures Tensors II., J. Dier. Geom., 9(1974), 577-582.
[7] D.E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math. 509, Springer-Verlag, Berlin, (1976).
[8] S. K. Chaubey, On generalized j-recurrent trans-Sasakian manifolds, (to appear).
[9] P. Libermann, Sur les automorphismes innit·esimaux des structures symplectiques et de atructures de contact, Coll. G·eom. Di. Globale, (1959), 3759.
[10] R.S. Hamilton, The Ricci flow on surfaces, Mathematical and General relativity (Santa Cruz, CA, 1986), American Math. Soc. Contemp. Math. 71
(1988), 237-262.
[11] H.G. Nagaraja, C.R. Premalatha, Ricci solitons in Kenmotsu manifolds, J. Math. Anal., 3 (2) (2012), 18-24.
[12] R. Sharma, Certain results on K-contact and (k;m)-contact manifolds, J. Geom., 89 (2008), 138-147.
[3] H. Endo, On the curvature tensor of nearly cosymplectic manifolds of constant j-sectional curvature. An. S¸tiint. Univ. Al. I. Cuza Ia¸si. Mat. 51(2)(2005),
439-454 .
[4] A. De Nicola, G. Dileo, I. Yudin, On nearly Sasakian and nearly cosymplectic manifolds, Ann. Mat., (2017), https://doi.org/10.1007/s10231-017-0671-2.
[5] D.E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Math., 203, Birkhauser Boston 2002.
[6] D.E. Blair, D.K. Showers, Almost Contact Manifolds with Killing Structures Tensors II., J. Dier. Geom., 9(1974), 577-582.
[7] D.E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math. 509, Springer-Verlag, Berlin, (1976).
[8] S. K. Chaubey, On generalized j-recurrent trans-Sasakian manifolds, (to appear).
[9] P. Libermann, Sur les automorphismes innit·esimaux des structures symplectiques et de atructures de contact, Coll. G·eom. Di. Globale, (1959), 3759.
[10] R.S. Hamilton, The Ricci flow on surfaces, Mathematical and General relativity (Santa Cruz, CA, 1986), American Math. Soc. Contemp. Math. 71
(1988), 237-262.
[11] H.G. Nagaraja, C.R. Premalatha, Ricci solitons in Kenmotsu manifolds, J. Math. Anal., 3 (2) (2012), 18-24.
[12] R. Sharma, Certain results on K-contact and (k;m)-contact manifolds, J. Geom., 89 (2008), 138-147.
Dündar, A., & Aktan, N. (2019). Some Results on Nearly Cosymplectic Manifolds. Universal Journal of Mathematics and Applications, 2(4), 218-223. https://doi.org/10.32323/ujma.625939
AMA
Dündar A, Aktan N. Some Results on Nearly Cosymplectic Manifolds. Univ. J. Math. Appl. December 2019;2(4):218-223. doi:10.32323/ujma.625939
Chicago
Dündar, Adile, and Nesip Aktan. “Some Results on Nearly Cosymplectic Manifolds”. Universal Journal of Mathematics and Applications 2, no. 4 (December 2019): 218-23. https://doi.org/10.32323/ujma.625939.
EndNote
Dündar A, Aktan N (December 1, 2019) Some Results on Nearly Cosymplectic Manifolds. Universal Journal of Mathematics and Applications 2 4 218–223.
IEEE
A. Dündar and N. Aktan, “Some Results on Nearly Cosymplectic Manifolds”, Univ. J. Math. Appl., vol. 2, no. 4, pp. 218–223, 2019, doi: 10.32323/ujma.625939.
ISNAD
Dündar, Adile - Aktan, Nesip. “Some Results on Nearly Cosymplectic Manifolds”. Universal Journal of Mathematics and Applications 2/4 (December 2019), 218-223. https://doi.org/10.32323/ujma.625939.
JAMA
Dündar A, Aktan N. Some Results on Nearly Cosymplectic Manifolds. Univ. J. Math. Appl. 2019;2:218–223.
MLA
Dündar, Adile and Nesip Aktan. “Some Results on Nearly Cosymplectic Manifolds”. Universal Journal of Mathematics and Applications, vol. 2, no. 4, 2019, pp. 218-23, doi:10.32323/ujma.625939.
Vancouver
Dündar A, Aktan N. Some Results on Nearly Cosymplectic Manifolds. Univ. J. Math. Appl. 2019;2(4):218-23.