Year 2020,
, 121 - 128, 29.09.2020
Ahmad Y. A. Salamoonı
,
D.d. Pawar
References
- [1] M. D. Qassim, K. M. Furati, N-e. Tatar, On a differential equation involving Hilfer-Hadamard fractional derivative. Abstract Appl. Anal. 2012, 2012:17,
Article ID 391062.
- [2] Ahmad Y. A. Salamooni, D. D. Pawar, Existence and uniqueness of boundary value problems for Hilfer-Hadamard-type fractional differential equations.
arXiv:1801.10400v1[math.AP] 31 Jan (2018).
- [3] I. Podlubny, Fractional Differential Equations. Academic Press, San Diego, (1999).
- [4] S. G. Samko, A. A. Kilbas; O. I. Marichev; Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, New York (1993).
[Translation from the Russian edition, Nauka i Tekhnika, Minsk (1987)]
- [5] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies 204,
Editor: Jan Van Mill, Elsevier, Amsterdam, The Netherlands, (2006).
- [6] R. Hilfer, Applications of Fractional Calculus in Physics. World Scientific Publ. Co., Singapore, (2000).
- [7] R. Hilfer, Threefold introduction to fractional derivatives. In: Anomalous transport: foundations and applications, 2008, 17-73.
- [8] J. A. Nanware, D. B. Dhaigude, Existence and uniqueness of solution of Riemann-Liouville fractional differential equations with integral boundary
conditions. Int. J. Nonlinear Sci., 14, (2012), 410-415.
- [9] M. D. Kassim and N. E. Tatar, Well-Posedness and Stability for a Differential Problem with Hilfer-Hadamard Fractional Derivative. Abst. Appl. Anal.,
2013, (2013), 1-12, Article ID 605029.
- [10] R. Hilfer, Y. Luchko, ˇZ: Tomovski, Operational method for solution of the fractional differential equations with the generalized Riemann-Liouville
fractional derivatives, Fract. Cal. Appl. Anal., 12, (2009), 299-318.
- [11] K. Diethelm, N. J. Ford, Analysis of fractional differential equations. J. Math. Anal. Appl., 265, (2002), 229-248.
- [12] K. M. Furati, M. D. Kassim and N.e.Tatar, Existence and uniqueness for a problem involving Hilfer fractional derivative. Computers Math. Appl.,
(2012), 1616-1626.
- [13] C. Kou, J. Liu, and Y. Ye, Existence and uniqueness of solutions for the Cachy-type problems of fractional differential equaitions. Discrete Dyn. Nat.
Soc., Article ID 142175, (2010), 1-15.
- [14] H.M. Srivastava, Z: Tomovski, Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel. Appl. Math.
Comput., 211, (2009), 198-210.
- [15] Zivorad Tomovski, R. Hilfer, H. Srivastava, Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler
type functions. Integral Transforms Spec. Funct., 21, (11), (2010), 797-814.
- [16] J. A. Nanware, D. B. Dhaigude, Existence and uniqueness of solutions of differential equations of fractional order with integral boundary conditions. J.
Nonlinear Sci. Appl., 7, (2014), 246-254.
- [17] Ahmad Y. A. Salamooni, D. D. Pawar, Existence and uniqueness of nonlocal boundary conditions for Hilfer-Hadamard-type fractional differential
equations. arXiv:1802.04262v1[math.AP] 12 Feb (2018).
- [18] D. Vivek, K. Kanagarajan and E. M. Elsayed, Some Existence and Stability Results for Hilfer-fractional Implicit Differential Equations with Nonlocal
Conditions. Mediterr. J. Math. 2018 15:15, https://doi.org/10.1007/s00009-017-1061-0, ©Springer International Publishing AG, part of Springer Nature
2018.
- [19] S. Abbas, M. Benchohra, , M. Bohner, Weak solutions for implicit differential equations with Hilfer–Hadamard fractional derivative. Adv. Dyn. Syst.
Appl., 12, (2017), 1-16.
- [20] S. Abbas, M. Benchohra, J.-E. Lazreg, Y. Zhou, A survey on Hadamard and Hilfer fractional differential equations: analysis and stability. Chaos
Solitons Fractals, 102, (2017), 47-71.
- [21] A. Y. A. Salamooni, D. D. Pawar, Unique positive solution for nonlinear Caputo-type fractional qdifference equations with nonlocal and Stieltjes
integral boundary conditions. Fractional Differential Calculus, 9(2), (2019), 295-307.
Existence and Uniqueness of Generalised Fractional Cauchy-Type Problem
Year 2020,
, 121 - 128, 29.09.2020
Ahmad Y. A. Salamoonı
,
D.d. Pawar
Abstract
In this paper, we study the existence and uniqueness of Generalized Fractional Cauchy-type problem involving Hilfer-Hadamard-type fractional derivative for a nonlinear fractional differential equation. Also, we prove an equivalence between the Cauchy-type problem and Volterra integral equation(VIE).
References
- [1] M. D. Qassim, K. M. Furati, N-e. Tatar, On a differential equation involving Hilfer-Hadamard fractional derivative. Abstract Appl. Anal. 2012, 2012:17,
Article ID 391062.
- [2] Ahmad Y. A. Salamooni, D. D. Pawar, Existence and uniqueness of boundary value problems for Hilfer-Hadamard-type fractional differential equations.
arXiv:1801.10400v1[math.AP] 31 Jan (2018).
- [3] I. Podlubny, Fractional Differential Equations. Academic Press, San Diego, (1999).
- [4] S. G. Samko, A. A. Kilbas; O. I. Marichev; Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, New York (1993).
[Translation from the Russian edition, Nauka i Tekhnika, Minsk (1987)]
- [5] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies 204,
Editor: Jan Van Mill, Elsevier, Amsterdam, The Netherlands, (2006).
- [6] R. Hilfer, Applications of Fractional Calculus in Physics. World Scientific Publ. Co., Singapore, (2000).
- [7] R. Hilfer, Threefold introduction to fractional derivatives. In: Anomalous transport: foundations and applications, 2008, 17-73.
- [8] J. A. Nanware, D. B. Dhaigude, Existence and uniqueness of solution of Riemann-Liouville fractional differential equations with integral boundary
conditions. Int. J. Nonlinear Sci., 14, (2012), 410-415.
- [9] M. D. Kassim and N. E. Tatar, Well-Posedness and Stability for a Differential Problem with Hilfer-Hadamard Fractional Derivative. Abst. Appl. Anal.,
2013, (2013), 1-12, Article ID 605029.
- [10] R. Hilfer, Y. Luchko, ˇZ: Tomovski, Operational method for solution of the fractional differential equations with the generalized Riemann-Liouville
fractional derivatives, Fract. Cal. Appl. Anal., 12, (2009), 299-318.
- [11] K. Diethelm, N. J. Ford, Analysis of fractional differential equations. J. Math. Anal. Appl., 265, (2002), 229-248.
- [12] K. M. Furati, M. D. Kassim and N.e.Tatar, Existence and uniqueness for a problem involving Hilfer fractional derivative. Computers Math. Appl.,
(2012), 1616-1626.
- [13] C. Kou, J. Liu, and Y. Ye, Existence and uniqueness of solutions for the Cachy-type problems of fractional differential equaitions. Discrete Dyn. Nat.
Soc., Article ID 142175, (2010), 1-15.
- [14] H.M. Srivastava, Z: Tomovski, Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel. Appl. Math.
Comput., 211, (2009), 198-210.
- [15] Zivorad Tomovski, R. Hilfer, H. Srivastava, Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler
type functions. Integral Transforms Spec. Funct., 21, (11), (2010), 797-814.
- [16] J. A. Nanware, D. B. Dhaigude, Existence and uniqueness of solutions of differential equations of fractional order with integral boundary conditions. J.
Nonlinear Sci. Appl., 7, (2014), 246-254.
- [17] Ahmad Y. A. Salamooni, D. D. Pawar, Existence and uniqueness of nonlocal boundary conditions for Hilfer-Hadamard-type fractional differential
equations. arXiv:1802.04262v1[math.AP] 12 Feb (2018).
- [18] D. Vivek, K. Kanagarajan and E. M. Elsayed, Some Existence and Stability Results for Hilfer-fractional Implicit Differential Equations with Nonlocal
Conditions. Mediterr. J. Math. 2018 15:15, https://doi.org/10.1007/s00009-017-1061-0, ©Springer International Publishing AG, part of Springer Nature
2018.
- [19] S. Abbas, M. Benchohra, , M. Bohner, Weak solutions for implicit differential equations with Hilfer–Hadamard fractional derivative. Adv. Dyn. Syst.
Appl., 12, (2017), 1-16.
- [20] S. Abbas, M. Benchohra, J.-E. Lazreg, Y. Zhou, A survey on Hadamard and Hilfer fractional differential equations: analysis and stability. Chaos
Solitons Fractals, 102, (2017), 47-71.
- [21] A. Y. A. Salamooni, D. D. Pawar, Unique positive solution for nonlinear Caputo-type fractional qdifference equations with nonlocal and Stieltjes
integral boundary conditions. Fractional Differential Calculus, 9(2), (2019), 295-307.