Research Article
BibTex RIS Cite

On Ideal Convergent Difference Double Sequence Spaces in Intuitionistic Fuzzy Normed Linear Spaces

Year 2021, , 94 - 100, 30.09.2021
https://doi.org/10.32323/ujma.977588

Abstract

In this paper, we introduce difference double sequence spaces ${I_{2} }^{(\mu,\upsilon)}(M,\Delta)$ and ${I_{2}^{0}}^{(\mu,\upsilon)}(M,\Delta)$ in the intuitionistic fuzzy normed linear spaces. We also investigate some topological properties of these spaces.

References

  • Altunda\u{g}, S., Kamber, E., \textit{Weighted statistical convergence in intuitionistic fuzzy normed linear spaces}, J. Inequal. Spec. Funct., \textbf{8}, 113-124 (2017).
  • Altunda\u{g}, S., Kamber, E., \textit{Weighted lacunary statistical convergence in intuitionistic fuzzy normed linear spaces}, Gen. Math. Notes, \textbf{37}, 1-19 (2016). Altunda\u{g}, S., E. Kamber, Lacunary $\Delta$- statistical convergence in intuitionistic fuzzy $n$-normed linear spaces, Journal of inequalities and applications, \textbf{40}, 1-12 (2014).
  • Anastassiou, G.A., \emph{Fuzzy approximation by fuzzy convolution type operators}, Comput. Math. Appl., \textbf{48}, 1369-1386 (2004).
  • Barros, L.C., R.C. Bassanezi, P.A. Tonelli, \emph{Fuzzy modelling in population dynamics}, Ecol. Model., \textbf{128}, 27-33 (2000).
  • Das, P., Kostyrko, P., Wilczynski, W., Malik, P., $I$- and $I^{*}$- the convergence of double sequences, Math. Slovaca \textbf{58}, 605-620 (2008).
  • Erceg, M.A., \emph{Metric spaces in fuzzy set theory}, J. Math. Anal. Appl., \textbf{69}, 205-230 (1979).
  • Fast, H., \textit{Sur la convergence statistique}, Colloq. Math., \textbf{2}, 241-244 (1951).
Year 2021, , 94 - 100, 30.09.2021
https://doi.org/10.32323/ujma.977588

Abstract

References

  • Altunda\u{g}, S., Kamber, E., \textit{Weighted statistical convergence in intuitionistic fuzzy normed linear spaces}, J. Inequal. Spec. Funct., \textbf{8}, 113-124 (2017).
  • Altunda\u{g}, S., Kamber, E., \textit{Weighted lacunary statistical convergence in intuitionistic fuzzy normed linear spaces}, Gen. Math. Notes, \textbf{37}, 1-19 (2016). Altunda\u{g}, S., E. Kamber, Lacunary $\Delta$- statistical convergence in intuitionistic fuzzy $n$-normed linear spaces, Journal of inequalities and applications, \textbf{40}, 1-12 (2014).
  • Anastassiou, G.A., \emph{Fuzzy approximation by fuzzy convolution type operators}, Comput. Math. Appl., \textbf{48}, 1369-1386 (2004).
  • Barros, L.C., R.C. Bassanezi, P.A. Tonelli, \emph{Fuzzy modelling in population dynamics}, Ecol. Model., \textbf{128}, 27-33 (2000).
  • Das, P., Kostyrko, P., Wilczynski, W., Malik, P., $I$- and $I^{*}$- the convergence of double sequences, Math. Slovaca \textbf{58}, 605-620 (2008).
  • Erceg, M.A., \emph{Metric spaces in fuzzy set theory}, J. Math. Anal. Appl., \textbf{69}, 205-230 (1979).
  • Fast, H., \textit{Sur la convergence statistique}, Colloq. Math., \textbf{2}, 241-244 (1951).
There are 7 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Esra Kamber 0000-0002-8833-3381

Selma Altundağ

Publication Date September 30, 2021
Submission Date August 2, 2021
Acceptance Date October 1, 2021
Published in Issue Year 2021

Cite

APA Kamber, E., & Altundağ, S. (2021). On Ideal Convergent Difference Double Sequence Spaces in Intuitionistic Fuzzy Normed Linear Spaces. Universal Journal of Mathematics and Applications, 4(3), 94-100. https://doi.org/10.32323/ujma.977588
AMA Kamber E, Altundağ S. On Ideal Convergent Difference Double Sequence Spaces in Intuitionistic Fuzzy Normed Linear Spaces. Univ. J. Math. Appl. September 2021;4(3):94-100. doi:10.32323/ujma.977588
Chicago Kamber, Esra, and Selma Altundağ. “On Ideal Convergent Difference Double Sequence Spaces in Intuitionistic Fuzzy Normed Linear Spaces”. Universal Journal of Mathematics and Applications 4, no. 3 (September 2021): 94-100. https://doi.org/10.32323/ujma.977588.
EndNote Kamber E, Altundağ S (September 1, 2021) On Ideal Convergent Difference Double Sequence Spaces in Intuitionistic Fuzzy Normed Linear Spaces. Universal Journal of Mathematics and Applications 4 3 94–100.
IEEE E. Kamber and S. Altundağ, “On Ideal Convergent Difference Double Sequence Spaces in Intuitionistic Fuzzy Normed Linear Spaces”, Univ. J. Math. Appl., vol. 4, no. 3, pp. 94–100, 2021, doi: 10.32323/ujma.977588.
ISNAD Kamber, Esra - Altundağ, Selma. “On Ideal Convergent Difference Double Sequence Spaces in Intuitionistic Fuzzy Normed Linear Spaces”. Universal Journal of Mathematics and Applications 4/3 (September 2021), 94-100. https://doi.org/10.32323/ujma.977588.
JAMA Kamber E, Altundağ S. On Ideal Convergent Difference Double Sequence Spaces in Intuitionistic Fuzzy Normed Linear Spaces. Univ. J. Math. Appl. 2021;4:94–100.
MLA Kamber, Esra and Selma Altundağ. “On Ideal Convergent Difference Double Sequence Spaces in Intuitionistic Fuzzy Normed Linear Spaces”. Universal Journal of Mathematics and Applications, vol. 4, no. 3, 2021, pp. 94-100, doi:10.32323/ujma.977588.
Vancouver Kamber E, Altundağ S. On Ideal Convergent Difference Double Sequence Spaces in Intuitionistic Fuzzy Normed Linear Spaces. Univ. J. Math. Appl. 2021;4(3):94-100.

 23181

Universal Journal of Mathematics and Applications 

29207              

Creative Commons License  The published articles in UJMA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.