Research Article
BibTex RIS Cite
Year 2020, Volume: 3 Issue: 1, 1 - 11, 25.03.2020
https://doi.org/10.32323/ujma.637876

Abstract

References

  • [1] K. Adegoke, Summation identities involving Padovan and Perrin numbers, (2019), arXiv:1812.03241v2 [math.CO].
  • [2] I. Bruce, A modified Tribonacci sequence, Fibonacci Quart., 22(3) (1984), 244–246.
  • [3] M. Catalani, Identities for Tribonacci-related sequences, (2002), arXiv:0209179 [math.CO].
  • [4] G. Cerda-Morales, On a generalization for Tribonacci quaternions, Mediterr. J. Math., 14(239) (2017), 1-12.
  • [5] E. Choi, Modular Tribonacci numbers by matrix method, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 20(3) (2013), 207–221.
  • [6] C.K. Cook, Bacon, M.R.: Some identities for Jacobsthal and Jacobsthal–Lucas numbers satisfying higher order recurrence relations. Ann. Math. Inform., 41 (2013), 27-39.
  • [7] M. Elia, Derived Sequences, The Tribonacci recurrence and cubic forms, Fibonacci Quart., 39(2) (2001), 107-115.
  • [8] R. Frontczak, Sums of Tribonacci and Tribonacci-Lucas numbers, Int. J. Math. Anal. 12(1) (2018), 19-24.
  • [9] H. G¨okbas¸, H. K¨ose, Some sum formulas for products of Pell and Pell-Lucas numbers, Int. J. Adv. Appl. Math. and Mech. 4(4) (2017), 1-4.
  • [10] R.T. Hansen, General identities for linear Fibonacci and Lucas summations, Fibonacci Quart., 16(2) (1978), 121-28.
  • [11] T. Koshy, Fibonacci and Lucas Numbers with Applications, A Wiley-Interscience Publication, New York, 2001.
  • [12] T. Koshy, Pell and Pell-Lucas Numbers with Applications, Springer, New York, 2014.
  • [13] K. Kuhapatanakul, L. Sukruan, The Generalized Tribonacci numbers with negative subscripts, Integer, 14 (2014), 1-6.
  • [14] P. Y. Lin, De Moivre-type identities for the Tribonacci numbers, Fibonacci Quart., 26 (1988), 131-134.
  • [15] S. Pethe, Some Identities for Tribonacci sequences, Fibonacci Quart., 26(2) (1988), 144-151.
  • [16] T. Parpar, k’ncı mertebeden rek¨urans bağıntısının özellikleri ve bazı uygulamaları, Yüksek Lisans Tezi, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, 2011.
  • [17] A. Scott, T. Delaney, Jr. V. Hoggatt, The Tribonacci sequence, Fibonacci Quart., 15(3) (1977), 193–200.
  • [18] A.G Shannon, A.F. Horadam, Some properties of third-order recurrence relations, Fibonacci Quart., 10(2) (1972), 135-146.
  • [19] A. Shannon, Tribonacci numbers and Pascal’s pyramid, Fibonacci Quart., 15(3) (1977), pp. 268 and 275.
  • [20] N.J.A. Sloane, The on-line encyclopedia of integer sequences. Available: http://oeis.org/
  • [21] Y. Soykan, Matrix sequences of Tribonacci and Tribonacci-Lucas numbers, (2018), arXiv:1809.07809v1 [math.NT] .
  • [22] Y. Soykan, Linear summing formulas of generalized Pentanacci and Gaussian generalized Pentanacci numbers, Journal of Advanced in Mathematics and Computer Science, 33(3) (2019), 1-14.
  • [23] Y. Soykan, On summing formulas of generalized Hexanacci and Gaussian generalized Hexanacci numbers, Asian Research Journal of Mathematics, 14(4) (2019), 1-14.
  • [24] Y. Soykan, On summing formulas for generalized Fibonacci and Gaussian generalized Fibonacci numbers, Advances in Research, 20(2) (2019), 1-15.
  • [25] Y. Soykan, On generalized Third-Order Pell numbers, Asian Journal of Advanced Research and Reports, 6(1) (2019), 1-18.
  • [26] W. Spickerman, Binet’s formula for the Tribonacci sequence, Fibonacci Quart., 20 (1982), 118–120.
  • [27] C. C. Yalavigi, A Note on ‘Another Generalized Fibonacci Sequence’, Math. Student. 39 (1971), 407–408.
  • [28] C. C. Yalavigi, Properties of Tribonacci numbers, Fibonacci Quart., 10(3) (1972), 231–246.
  • [29] N. Yilmaz, N. Taskara, Tribonacci and Tribonacci-Lucas numbers via the determinants of special matrices, Appl. Math. Sci., 8(39) (2014), 1947-1955.
  • [30] M. E. Waddill, Using matrix techniques to establish properties of a generalized Tribonacci sequence (in Applications of Fibonacci Numbers, Volume 4, G. E. Bergum et al., eds.). Kluwer Academic Publishers. Dordrecht, The Netherlands: pp. 299-308, 1991.
  • [31] M. E. Waddill, The Tetranacci sequence and generalizations, Fibonacci Quart., (1992), 9-20.

Summing Formulas for Generalized Tribonacci Numbers

Year 2020, Volume: 3 Issue: 1, 1 - 11, 25.03.2020
https://doi.org/10.32323/ujma.637876

Abstract

In this paper, closed forms of the summation formulas for generalized Tribonacci numbers are presented. Then, some previous results are recovered as particular cases of the present results. As special cases, we give summation formulas of Tribonacci, Tribonacci-Lucas, Padovan, Perrin, Narayana and some other third order linear recurrance sequences. All the summing formulas of well known recurrence sequences which we deal with are linear except the cases Pell-Padovan and Padovan-Perrin.

References

  • [1] K. Adegoke, Summation identities involving Padovan and Perrin numbers, (2019), arXiv:1812.03241v2 [math.CO].
  • [2] I. Bruce, A modified Tribonacci sequence, Fibonacci Quart., 22(3) (1984), 244–246.
  • [3] M. Catalani, Identities for Tribonacci-related sequences, (2002), arXiv:0209179 [math.CO].
  • [4] G. Cerda-Morales, On a generalization for Tribonacci quaternions, Mediterr. J. Math., 14(239) (2017), 1-12.
  • [5] E. Choi, Modular Tribonacci numbers by matrix method, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 20(3) (2013), 207–221.
  • [6] C.K. Cook, Bacon, M.R.: Some identities for Jacobsthal and Jacobsthal–Lucas numbers satisfying higher order recurrence relations. Ann. Math. Inform., 41 (2013), 27-39.
  • [7] M. Elia, Derived Sequences, The Tribonacci recurrence and cubic forms, Fibonacci Quart., 39(2) (2001), 107-115.
  • [8] R. Frontczak, Sums of Tribonacci and Tribonacci-Lucas numbers, Int. J. Math. Anal. 12(1) (2018), 19-24.
  • [9] H. G¨okbas¸, H. K¨ose, Some sum formulas for products of Pell and Pell-Lucas numbers, Int. J. Adv. Appl. Math. and Mech. 4(4) (2017), 1-4.
  • [10] R.T. Hansen, General identities for linear Fibonacci and Lucas summations, Fibonacci Quart., 16(2) (1978), 121-28.
  • [11] T. Koshy, Fibonacci and Lucas Numbers with Applications, A Wiley-Interscience Publication, New York, 2001.
  • [12] T. Koshy, Pell and Pell-Lucas Numbers with Applications, Springer, New York, 2014.
  • [13] K. Kuhapatanakul, L. Sukruan, The Generalized Tribonacci numbers with negative subscripts, Integer, 14 (2014), 1-6.
  • [14] P. Y. Lin, De Moivre-type identities for the Tribonacci numbers, Fibonacci Quart., 26 (1988), 131-134.
  • [15] S. Pethe, Some Identities for Tribonacci sequences, Fibonacci Quart., 26(2) (1988), 144-151.
  • [16] T. Parpar, k’ncı mertebeden rek¨urans bağıntısının özellikleri ve bazı uygulamaları, Yüksek Lisans Tezi, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, 2011.
  • [17] A. Scott, T. Delaney, Jr. V. Hoggatt, The Tribonacci sequence, Fibonacci Quart., 15(3) (1977), 193–200.
  • [18] A.G Shannon, A.F. Horadam, Some properties of third-order recurrence relations, Fibonacci Quart., 10(2) (1972), 135-146.
  • [19] A. Shannon, Tribonacci numbers and Pascal’s pyramid, Fibonacci Quart., 15(3) (1977), pp. 268 and 275.
  • [20] N.J.A. Sloane, The on-line encyclopedia of integer sequences. Available: http://oeis.org/
  • [21] Y. Soykan, Matrix sequences of Tribonacci and Tribonacci-Lucas numbers, (2018), arXiv:1809.07809v1 [math.NT] .
  • [22] Y. Soykan, Linear summing formulas of generalized Pentanacci and Gaussian generalized Pentanacci numbers, Journal of Advanced in Mathematics and Computer Science, 33(3) (2019), 1-14.
  • [23] Y. Soykan, On summing formulas of generalized Hexanacci and Gaussian generalized Hexanacci numbers, Asian Research Journal of Mathematics, 14(4) (2019), 1-14.
  • [24] Y. Soykan, On summing formulas for generalized Fibonacci and Gaussian generalized Fibonacci numbers, Advances in Research, 20(2) (2019), 1-15.
  • [25] Y. Soykan, On generalized Third-Order Pell numbers, Asian Journal of Advanced Research and Reports, 6(1) (2019), 1-18.
  • [26] W. Spickerman, Binet’s formula for the Tribonacci sequence, Fibonacci Quart., 20 (1982), 118–120.
  • [27] C. C. Yalavigi, A Note on ‘Another Generalized Fibonacci Sequence’, Math. Student. 39 (1971), 407–408.
  • [28] C. C. Yalavigi, Properties of Tribonacci numbers, Fibonacci Quart., 10(3) (1972), 231–246.
  • [29] N. Yilmaz, N. Taskara, Tribonacci and Tribonacci-Lucas numbers via the determinants of special matrices, Appl. Math. Sci., 8(39) (2014), 1947-1955.
  • [30] M. E. Waddill, Using matrix techniques to establish properties of a generalized Tribonacci sequence (in Applications of Fibonacci Numbers, Volume 4, G. E. Bergum et al., eds.). Kluwer Academic Publishers. Dordrecht, The Netherlands: pp. 299-308, 1991.
  • [31] M. E. Waddill, The Tetranacci sequence and generalizations, Fibonacci Quart., (1992), 9-20.
There are 31 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Yüksel Soykan 0000-0002-1895-211X

Publication Date March 25, 2020
Submission Date October 24, 2019
Acceptance Date December 11, 2019
Published in Issue Year 2020 Volume: 3 Issue: 1

Cite

APA Soykan, Y. (2020). Summing Formulas for Generalized Tribonacci Numbers. Universal Journal of Mathematics and Applications, 3(1), 1-11. https://doi.org/10.32323/ujma.637876
AMA Soykan Y. Summing Formulas for Generalized Tribonacci Numbers. Univ. J. Math. Appl. March 2020;3(1):1-11. doi:10.32323/ujma.637876
Chicago Soykan, Yüksel. “Summing Formulas for Generalized Tribonacci Numbers”. Universal Journal of Mathematics and Applications 3, no. 1 (March 2020): 1-11. https://doi.org/10.32323/ujma.637876.
EndNote Soykan Y (March 1, 2020) Summing Formulas for Generalized Tribonacci Numbers. Universal Journal of Mathematics and Applications 3 1 1–11.
IEEE Y. Soykan, “Summing Formulas for Generalized Tribonacci Numbers”, Univ. J. Math. Appl., vol. 3, no. 1, pp. 1–11, 2020, doi: 10.32323/ujma.637876.
ISNAD Soykan, Yüksel. “Summing Formulas for Generalized Tribonacci Numbers”. Universal Journal of Mathematics and Applications 3/1 (March 2020), 1-11. https://doi.org/10.32323/ujma.637876.
JAMA Soykan Y. Summing Formulas for Generalized Tribonacci Numbers. Univ. J. Math. Appl. 2020;3:1–11.
MLA Soykan, Yüksel. “Summing Formulas for Generalized Tribonacci Numbers”. Universal Journal of Mathematics and Applications, vol. 3, no. 1, 2020, pp. 1-11, doi:10.32323/ujma.637876.
Vancouver Soykan Y. Summing Formulas for Generalized Tribonacci Numbers. Univ. J. Math. Appl. 2020;3(1):1-11.

Cited By



An extended framework for bihyperbolic generalized Tribonacci numbers
Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics
https://doi.org/10.31801/cfsuasmas.1378136












A Study on Generalized Jacobsthal-Padovan Numbers
Earthline Journal of Mathematical Sciences
Yüksel Soykan
https://doi.org/10.34198/ejms.4220.227251

 23181

Universal Journal of Mathematics and Applications 

29207              

Creative Commons License  The published articles in UJMA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.