Research Article
BibTex RIS Cite

Generalized Woodall Numbers: An Investigation of Properties of Woodall and Cullen Numbers via Their Third Order Linear Recurrence Relations

Year 2022, Volume: 5 Issue: 2, 69 - 81, 30.06.2022
https://doi.org/10.32323/ujma.1057287

Abstract

In this paper, we investigate the generalized Woodall sequences and we deal with, in detail, four special cases, namely, modified Woodall, modified Cullen, Woodall and Cullen sequences. We present Binet's formulas, generating functions, Simson formulas, and the summation formulas for these sequences. Moreover, we give some identities and matrices related with these sequences.

References

  • [1] P. Berrizbeitia, J. G. Fernandes, M. J. Gonz´alez, F. Luca, V. J. M. Huguet, On Cullen numbers which are Both Riesel and Sierpi´nski numbers, Journal of Number Theory, 132 (2012), 2836-2841, http://dx.doi.org/10.1016/j.jnt.2012.05.021
  • [2] Y. Bilu, D. Marques, A. Togbe, Generalized Cullen numbers in linear recurrence sequences, Journal of Number Theory, 202 (2019), 412-425, https://doi.org/10.1016/j.jnt.2018.11.025
  • [3] I. Bruce, A modified Tribonacci sequence, Fibonacci Quarterly, 22(3) (1984), 244–246.
  • [4] M. Catalani, Identities for Tribonacci-related sequences, (2012), arXiv:math/0209179.
  • [5] E. Choi, Modular Tribonacci numbers by matrix method, Journal of the Korean Society of Mathematical Education Series B: Pure and Applied. Mathematics, 20(3) (2013), 207–221.
  • [6] A. J. C. Cunningham, H. J. Woodall, Factorisation of Q = (2q q) and (q:2q 1), Messenger of Mathematics, 47 (1917), 1–38.
  • [7] M. Elia, Derived sequences, The Tribonacci recurrence and cubic forms, Fibonacci Quarterly, 39(2) (2001), 107-115.
  • [8] M. C. Er, , Sums of Fibonacci numbers by matrix methods, Fibonacci Quarterly, 22(3) (1984), 204-207.
  • [9] J. Grantham, H. Graves, The abc conjecture implies that only finitely many s-Cullen numbers are repunits, (2021) http://arxiv.org/abs/2009.04052v3, MathNT.
  • [10] R. Guy, Unsolved Problems in Number Theory (2nd ed.), Springer-Verlag, New York, 1994.
  • [11] C. Hooley, Applications of the sieve methods to the theory of numbers, Cambridge University Press, Cambridge, 1976.
  • [12] D. Kalman, Generalized Fibonacci numbers by matrix methods, Fibonacci Quarterly, 20(1) (1982), 73-76.
  • [13] W. Keller, New Cullen primes, Math. Comput. 64 (1995), 1733-1741.
  • [14] P. Y. Lin, De Moivre-Type identities for the Tribonacci numbers, Fibonacci Quarterly, 26 (1988), 131-134.
  • [15] F. Luca, P. Stanica, Cullen numbers in binary recurrent sequences, FT. Howard (ed.), Applications of Fibonacci Numbers : Proceedings of the Tenth International Research Conference on Fibonacci Numbers and their Applications, Kluwer Academic Publishers, 9 (2004) 167-175.
  • [16] D. Marques, On Generalized Cullen and Woodall numbers that are also Fibonacci numbers, Journal of Integer Sequences, 17 (2014), Article 14.9.4 [17] D. Marques, Fibonacci s-Cullen and s-Woodall numbers, , Journal of Integer Sequences, 18 (2015), Article 15.1.4
  • [18] N. K. Meher, S. S. Rout, Cullen numbers in sums of terms of recurrence sequence, (2020), http://arxiv.org/abs/2010.10014v1, MathNT. [19] S. Pethe, Some identities for Tribonacci sequences, Fibonacci Quarterly, 26(2) (1988), 144–151.
  • [20] A. Scott, T. Delaney, V. Jr. Hoggatt, The Tribonacci sequence, Fibonacci Quarterly, 15(3) (1977), 193–200.
  • [21] A. Shannon, Tribonacci numbers and Pascal’s pyramid, Fibonacci Quarterly, 15(3) (1977), 268-275.
  • [22] N.J.A. Sloane, The on-line encyclopedia of integer sequences, http://oeis.org/
  • [23] Y. Soykan, Simson Identity of Generalized m-step Fibonacci numbers, Int. J. Adv. Appl. Math. and Mech. 7(2) (2019), 45-56.
  • [24] Y. Soykan, Tribonacci and Tribonacci-Lucas sedenions, Mathematics 7(1) (2019), 74.
  • [25] Y. Soykan, A study on generalized (r,s,t)-numbers, MathLAB Journal, 7 (2020), 101-129.
  • [26] Y. Soykan, On the recurrence properties of getneralized Tribonacci sequence, Earthline Journal of Mathematical Sciences, 6(2) (2021), 253-269, https://doi.org/10.34198/ejms.6221.253269
  • [27] W. Spickerman, Binet’s formula for the Tribonacci sequence, Fibonacci Quarterly, 20 (1982), 118–120.
  • [28] C. C. Yalavigi, Properties of Tribonacci numbers, Fibonacci Quarterly, 10(3) (1972), 231–246.
  • [29] N. Yilmaz, N. Taskara, Tribonacci and Tribonacci-Lucas numbers via the determinants of special matrices, Applied Mathematical Sciences, 8(39) (2014), 1947-1955.
Year 2022, Volume: 5 Issue: 2, 69 - 81, 30.06.2022
https://doi.org/10.32323/ujma.1057287

Abstract

References

  • [1] P. Berrizbeitia, J. G. Fernandes, M. J. Gonz´alez, F. Luca, V. J. M. Huguet, On Cullen numbers which are Both Riesel and Sierpi´nski numbers, Journal of Number Theory, 132 (2012), 2836-2841, http://dx.doi.org/10.1016/j.jnt.2012.05.021
  • [2] Y. Bilu, D. Marques, A. Togbe, Generalized Cullen numbers in linear recurrence sequences, Journal of Number Theory, 202 (2019), 412-425, https://doi.org/10.1016/j.jnt.2018.11.025
  • [3] I. Bruce, A modified Tribonacci sequence, Fibonacci Quarterly, 22(3) (1984), 244–246.
  • [4] M. Catalani, Identities for Tribonacci-related sequences, (2012), arXiv:math/0209179.
  • [5] E. Choi, Modular Tribonacci numbers by matrix method, Journal of the Korean Society of Mathematical Education Series B: Pure and Applied. Mathematics, 20(3) (2013), 207–221.
  • [6] A. J. C. Cunningham, H. J. Woodall, Factorisation of Q = (2q q) and (q:2q 1), Messenger of Mathematics, 47 (1917), 1–38.
  • [7] M. Elia, Derived sequences, The Tribonacci recurrence and cubic forms, Fibonacci Quarterly, 39(2) (2001), 107-115.
  • [8] M. C. Er, , Sums of Fibonacci numbers by matrix methods, Fibonacci Quarterly, 22(3) (1984), 204-207.
  • [9] J. Grantham, H. Graves, The abc conjecture implies that only finitely many s-Cullen numbers are repunits, (2021) http://arxiv.org/abs/2009.04052v3, MathNT.
  • [10] R. Guy, Unsolved Problems in Number Theory (2nd ed.), Springer-Verlag, New York, 1994.
  • [11] C. Hooley, Applications of the sieve methods to the theory of numbers, Cambridge University Press, Cambridge, 1976.
  • [12] D. Kalman, Generalized Fibonacci numbers by matrix methods, Fibonacci Quarterly, 20(1) (1982), 73-76.
  • [13] W. Keller, New Cullen primes, Math. Comput. 64 (1995), 1733-1741.
  • [14] P. Y. Lin, De Moivre-Type identities for the Tribonacci numbers, Fibonacci Quarterly, 26 (1988), 131-134.
  • [15] F. Luca, P. Stanica, Cullen numbers in binary recurrent sequences, FT. Howard (ed.), Applications of Fibonacci Numbers : Proceedings of the Tenth International Research Conference on Fibonacci Numbers and their Applications, Kluwer Academic Publishers, 9 (2004) 167-175.
  • [16] D. Marques, On Generalized Cullen and Woodall numbers that are also Fibonacci numbers, Journal of Integer Sequences, 17 (2014), Article 14.9.4 [17] D. Marques, Fibonacci s-Cullen and s-Woodall numbers, , Journal of Integer Sequences, 18 (2015), Article 15.1.4
  • [18] N. K. Meher, S. S. Rout, Cullen numbers in sums of terms of recurrence sequence, (2020), http://arxiv.org/abs/2010.10014v1, MathNT. [19] S. Pethe, Some identities for Tribonacci sequences, Fibonacci Quarterly, 26(2) (1988), 144–151.
  • [20] A. Scott, T. Delaney, V. Jr. Hoggatt, The Tribonacci sequence, Fibonacci Quarterly, 15(3) (1977), 193–200.
  • [21] A. Shannon, Tribonacci numbers and Pascal’s pyramid, Fibonacci Quarterly, 15(3) (1977), 268-275.
  • [22] N.J.A. Sloane, The on-line encyclopedia of integer sequences, http://oeis.org/
  • [23] Y. Soykan, Simson Identity of Generalized m-step Fibonacci numbers, Int. J. Adv. Appl. Math. and Mech. 7(2) (2019), 45-56.
  • [24] Y. Soykan, Tribonacci and Tribonacci-Lucas sedenions, Mathematics 7(1) (2019), 74.
  • [25] Y. Soykan, A study on generalized (r,s,t)-numbers, MathLAB Journal, 7 (2020), 101-129.
  • [26] Y. Soykan, On the recurrence properties of getneralized Tribonacci sequence, Earthline Journal of Mathematical Sciences, 6(2) (2021), 253-269, https://doi.org/10.34198/ejms.6221.253269
  • [27] W. Spickerman, Binet’s formula for the Tribonacci sequence, Fibonacci Quarterly, 20 (1982), 118–120.
  • [28] C. C. Yalavigi, Properties of Tribonacci numbers, Fibonacci Quarterly, 10(3) (1972), 231–246.
  • [29] N. Yilmaz, N. Taskara, Tribonacci and Tribonacci-Lucas numbers via the determinants of special matrices, Applied Mathematical Sciences, 8(39) (2014), 1947-1955.
There are 27 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Yüksel Soykan 0000-0002-1895-211X

Vedat İrge

Publication Date June 30, 2022
Submission Date January 13, 2022
Acceptance Date June 1, 2022
Published in Issue Year 2022 Volume: 5 Issue: 2

Cite

APA Soykan, Y., & İrge, V. (2022). Generalized Woodall Numbers: An Investigation of Properties of Woodall and Cullen Numbers via Their Third Order Linear Recurrence Relations. Universal Journal of Mathematics and Applications, 5(2), 69-81. https://doi.org/10.32323/ujma.1057287
AMA Soykan Y, İrge V. Generalized Woodall Numbers: An Investigation of Properties of Woodall and Cullen Numbers via Their Third Order Linear Recurrence Relations. Univ. J. Math. Appl. June 2022;5(2):69-81. doi:10.32323/ujma.1057287
Chicago Soykan, Yüksel, and Vedat İrge. “Generalized Woodall Numbers: An Investigation of Properties of Woodall and Cullen Numbers via Their Third Order Linear Recurrence Relations”. Universal Journal of Mathematics and Applications 5, no. 2 (June 2022): 69-81. https://doi.org/10.32323/ujma.1057287.
EndNote Soykan Y, İrge V (June 1, 2022) Generalized Woodall Numbers: An Investigation of Properties of Woodall and Cullen Numbers via Their Third Order Linear Recurrence Relations. Universal Journal of Mathematics and Applications 5 2 69–81.
IEEE Y. Soykan and V. İrge, “Generalized Woodall Numbers: An Investigation of Properties of Woodall and Cullen Numbers via Their Third Order Linear Recurrence Relations”, Univ. J. Math. Appl., vol. 5, no. 2, pp. 69–81, 2022, doi: 10.32323/ujma.1057287.
ISNAD Soykan, Yüksel - İrge, Vedat. “Generalized Woodall Numbers: An Investigation of Properties of Woodall and Cullen Numbers via Their Third Order Linear Recurrence Relations”. Universal Journal of Mathematics and Applications 5/2 (June 2022), 69-81. https://doi.org/10.32323/ujma.1057287.
JAMA Soykan Y, İrge V. Generalized Woodall Numbers: An Investigation of Properties of Woodall and Cullen Numbers via Their Third Order Linear Recurrence Relations. Univ. J. Math. Appl. 2022;5:69–81.
MLA Soykan, Yüksel and Vedat İrge. “Generalized Woodall Numbers: An Investigation of Properties of Woodall and Cullen Numbers via Their Third Order Linear Recurrence Relations”. Universal Journal of Mathematics and Applications, vol. 5, no. 2, 2022, pp. 69-81, doi:10.32323/ujma.1057287.
Vancouver Soykan Y, İrge V. Generalized Woodall Numbers: An Investigation of Properties of Woodall and Cullen Numbers via Their Third Order Linear Recurrence Relations. Univ. J. Math. Appl. 2022;5(2):69-81.

 23181

Universal Journal of Mathematics and Applications 

29207              

Creative Commons License  The published articles in UJMA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.