Research Article
BibTex RIS Cite
Year 2022, Volume: 5 Issue: 4, 156 - 162, 29.12.2022
https://doi.org/10.32323/ujma.1205420

Abstract

References

  • [1] A. Pringsheim, Zur theorie der zweifach unendlichen zahlenfolgen, Math. Ann., 53 (1900), 289-321.
  • [2] F. Moricz, Statistical convergence of multiple sequences, Arch. Math. (Basel), 81 (2004), 82-89.
  • [3] S. Baron, U. Stadtm¨uller, Tauberian theorems for power series methods applied to double sequences, J. Math. Anal. Appl., 211(2) (1997), 574-589.
  • [4] M. U¨ nver, C. Orhan, Statistical convergence with respect to power series methods and applications to approximation theory, Numerical Functional Analysis and Optimization, 40(5) (2019), 535-547.
  • [5] S. Yıldız, K. Demirci, F. Dirik, Korovkin theory via Pp-statistical relative modular convergence for double sequences, Rend. Circ. Mat. Palermo, II. Ser, (2022), 1-17.
  • [6] R. F. Patterson, E. Savas¸, Uniformly summable double sequences, Studia Scientiarum Mathematicarum Hungarica, 44 (2007), 147-158.
  • [7] E. Savas¸, B. E. Rhoades, Double summability factor theorems and applications, Math. Inequal. Appl., 10 (2007), 125-149.
  • [8] P. P. Korovkin, On convergence of linear positive operators in the space of continuous functions, Doklady Akademii Nauk, 90 (1953), 961-964 (Russian).
  • [9] O¨ .G. Atlıhan, C. Orhan, Summation process of positive linear operators, Computers and Mathematics with Applications, 56 (2008), 1188-1195.
  • [10] N. S. Bayram, Strong summation process in locally integrable function spaces, Hacettepe Journal of Mathematics and Statistics, 45(3) (2016), 683-694.
  • [11] N. S. Bayram, C. Orhan, A-Summation process in the space of locally integrable functions, Stud. Univ. Babes-Bolyai Math., 65 (2020), 255-268.
  • [12] S. C¸ ınar, S. Yıldız, P-statistical summation process of sequences of convolution operators, Indian Journal of Pure and Applied Mathematics, 53(3) (2022), 648-659.
  • [13] F. Dirik, K. Demirci, Korovkin type approximation theorem for functions of two variables in statistical sense, Turkish Journal of Mathematics, 34(1) (2010), 73-84.
  • [14] F. Dirik, K. Demirci, B-statistical approximation for periodic functions, Studia Scientiarum Mathematicarum Hungarica, 47(3) (2010), 321-332.
  • [15] K. Demirci, F. Dirik, Approximation for periodic functions via statistical s-convergence, Mathematical Communications, 16(1) (2011), 77-84.
  • [16] K. Demirci, S. Orhan, Statistical relative approximation on modular spaces, Results in Mathematics, 71(3) (2017), 1167-1184.
  • [17] K. Demirci, S. Yıldız, F. Dirik, Approximation via power series method in two-dimensional weighted spaces, Bulletin of the Malaysian Mathematical Sciences Society, 43(6) (2020), 3871-3883.
  • [18] O. Duman, Statistical approximation for periodic functions, Demonstratio Mathematica, 36(4) (2003), 873-878.
  • [19] A. D. Gadjiev, C. Orhan, Some approximation theorems via statistical convergence, The Rocky Mountain Journal of Mathematics, (2002), 129-138.
  • [20] S. Orhan, K. Demirci, Statistical A-summation process and Korovkin type approximation theorem on modular spaces, Positivity, 18(4) (2014), 669-686.
  • [21] V. I. Volkov, On the convergence of sequences of positive linear operators in the space of two variables, Dokl. Akad. Nauk. SSSR (N.S.) 115 (1957), 17-19.
  • [22] O. Duman, E. Erkus¸, Approximation of continuous periodic functions via statistical convergence, Comput. Math. Appl., 52 (2006) 967-974.
  • [23] K. Demirci, F. Dirik, Four-dimensional matrix transformation and rate of A-statistical convergence of periodic functions, Mathematical and Computer Modelling, 52 (2010), 1858-1866.

Periodic Korovkin Theorem via $P_{p}^{2}$-Statistical $\mathcal{A}$-Summation Process

Year 2022, Volume: 5 Issue: 4, 156 - 162, 29.12.2022
https://doi.org/10.32323/ujma.1205420

Abstract

In the current research, we investigate and establish Korovkin-type approximation theorems for linear operators defined on the space of all $% 2\pi $-periodic and real valued continuous functions on $% %TCIMACRO{\U{211d} }% %BeginExpansion \mathbb{R} %EndExpansion ^{2}$ by means of $\mathcal{A}$-summation process via statistical convergence with respect to power series method. We demonstrate with an example how our theory is more strong than previously studied. Additionally, we research the rate of convergence of positive linear operators defined on this space.

References

  • [1] A. Pringsheim, Zur theorie der zweifach unendlichen zahlenfolgen, Math. Ann., 53 (1900), 289-321.
  • [2] F. Moricz, Statistical convergence of multiple sequences, Arch. Math. (Basel), 81 (2004), 82-89.
  • [3] S. Baron, U. Stadtm¨uller, Tauberian theorems for power series methods applied to double sequences, J. Math. Anal. Appl., 211(2) (1997), 574-589.
  • [4] M. U¨ nver, C. Orhan, Statistical convergence with respect to power series methods and applications to approximation theory, Numerical Functional Analysis and Optimization, 40(5) (2019), 535-547.
  • [5] S. Yıldız, K. Demirci, F. Dirik, Korovkin theory via Pp-statistical relative modular convergence for double sequences, Rend. Circ. Mat. Palermo, II. Ser, (2022), 1-17.
  • [6] R. F. Patterson, E. Savas¸, Uniformly summable double sequences, Studia Scientiarum Mathematicarum Hungarica, 44 (2007), 147-158.
  • [7] E. Savas¸, B. E. Rhoades, Double summability factor theorems and applications, Math. Inequal. Appl., 10 (2007), 125-149.
  • [8] P. P. Korovkin, On convergence of linear positive operators in the space of continuous functions, Doklady Akademii Nauk, 90 (1953), 961-964 (Russian).
  • [9] O¨ .G. Atlıhan, C. Orhan, Summation process of positive linear operators, Computers and Mathematics with Applications, 56 (2008), 1188-1195.
  • [10] N. S. Bayram, Strong summation process in locally integrable function spaces, Hacettepe Journal of Mathematics and Statistics, 45(3) (2016), 683-694.
  • [11] N. S. Bayram, C. Orhan, A-Summation process in the space of locally integrable functions, Stud. Univ. Babes-Bolyai Math., 65 (2020), 255-268.
  • [12] S. C¸ ınar, S. Yıldız, P-statistical summation process of sequences of convolution operators, Indian Journal of Pure and Applied Mathematics, 53(3) (2022), 648-659.
  • [13] F. Dirik, K. Demirci, Korovkin type approximation theorem for functions of two variables in statistical sense, Turkish Journal of Mathematics, 34(1) (2010), 73-84.
  • [14] F. Dirik, K. Demirci, B-statistical approximation for periodic functions, Studia Scientiarum Mathematicarum Hungarica, 47(3) (2010), 321-332.
  • [15] K. Demirci, F. Dirik, Approximation for periodic functions via statistical s-convergence, Mathematical Communications, 16(1) (2011), 77-84.
  • [16] K. Demirci, S. Orhan, Statistical relative approximation on modular spaces, Results in Mathematics, 71(3) (2017), 1167-1184.
  • [17] K. Demirci, S. Yıldız, F. Dirik, Approximation via power series method in two-dimensional weighted spaces, Bulletin of the Malaysian Mathematical Sciences Society, 43(6) (2020), 3871-3883.
  • [18] O. Duman, Statistical approximation for periodic functions, Demonstratio Mathematica, 36(4) (2003), 873-878.
  • [19] A. D. Gadjiev, C. Orhan, Some approximation theorems via statistical convergence, The Rocky Mountain Journal of Mathematics, (2002), 129-138.
  • [20] S. Orhan, K. Demirci, Statistical A-summation process and Korovkin type approximation theorem on modular spaces, Positivity, 18(4) (2014), 669-686.
  • [21] V. I. Volkov, On the convergence of sequences of positive linear operators in the space of two variables, Dokl. Akad. Nauk. SSSR (N.S.) 115 (1957), 17-19.
  • [22] O. Duman, E. Erkus¸, Approximation of continuous periodic functions via statistical convergence, Comput. Math. Appl., 52 (2006) 967-974.
  • [23] K. Demirci, F. Dirik, Four-dimensional matrix transformation and rate of A-statistical convergence of periodic functions, Mathematical and Computer Modelling, 52 (2010), 1858-1866.
There are 23 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Sevda Yıldız 0000-0002-4730-2271

Fadime Dirik

Kamil Demirci 0000-0002-5976-9768

Publication Date December 29, 2022
Submission Date November 15, 2022
Acceptance Date December 27, 2022
Published in Issue Year 2022 Volume: 5 Issue: 4

Cite

APA Yıldız, S., Dirik, F., & Demirci, K. (2022). Periodic Korovkin Theorem via $P_{p}^{2}$-Statistical $\mathcal{A}$-Summation Process. Universal Journal of Mathematics and Applications, 5(4), 156-162. https://doi.org/10.32323/ujma.1205420
AMA Yıldız S, Dirik F, Demirci K. Periodic Korovkin Theorem via $P_{p}^{2}$-Statistical $\mathcal{A}$-Summation Process. Univ. J. Math. Appl. December 2022;5(4):156-162. doi:10.32323/ujma.1205420
Chicago Yıldız, Sevda, Fadime Dirik, and Kamil Demirci. “Periodic Korovkin Theorem via $P_{p}^{2}$-Statistical $\mathcal{A}$-Summation Process”. Universal Journal of Mathematics and Applications 5, no. 4 (December 2022): 156-62. https://doi.org/10.32323/ujma.1205420.
EndNote Yıldız S, Dirik F, Demirci K (December 1, 2022) Periodic Korovkin Theorem via $P_{p}^{2}$-Statistical $\mathcal{A}$-Summation Process. Universal Journal of Mathematics and Applications 5 4 156–162.
IEEE S. Yıldız, F. Dirik, and K. Demirci, “Periodic Korovkin Theorem via $P_{p}^{2}$-Statistical $\mathcal{A}$-Summation Process”, Univ. J. Math. Appl., vol. 5, no. 4, pp. 156–162, 2022, doi: 10.32323/ujma.1205420.
ISNAD Yıldız, Sevda et al. “Periodic Korovkin Theorem via $P_{p}^{2}$-Statistical $\mathcal{A}$-Summation Process”. Universal Journal of Mathematics and Applications 5/4 (December 2022), 156-162. https://doi.org/10.32323/ujma.1205420.
JAMA Yıldız S, Dirik F, Demirci K. Periodic Korovkin Theorem via $P_{p}^{2}$-Statistical $\mathcal{A}$-Summation Process. Univ. J. Math. Appl. 2022;5:156–162.
MLA Yıldız, Sevda et al. “Periodic Korovkin Theorem via $P_{p}^{2}$-Statistical $\mathcal{A}$-Summation Process”. Universal Journal of Mathematics and Applications, vol. 5, no. 4, 2022, pp. 156-62, doi:10.32323/ujma.1205420.
Vancouver Yıldız S, Dirik F, Demirci K. Periodic Korovkin Theorem via $P_{p}^{2}$-Statistical $\mathcal{A}$-Summation Process. Univ. J. Math. Appl. 2022;5(4):156-62.

 23181

Universal Journal of Mathematics and Applications 

29207              

Creative Commons License  The published articles in UJMA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.