New Perspectives on Fractional Milne-Type Inequalities: Insights from Twice-Differentiable Functions
Year 2024,
Volume: 7 Issue: 1, 30 - 37, 18.03.2024
Henok Desalegn Desta
,
Hüseyin Budak
,
Hasan Kara
Abstract
This paper delves into an inquiry that centers on the exploration of fractional adaptations of Milne-type inequalities by employing the framework of twice-differentiable convex mappings. Leveraging the fundamental tenets of convexity, H\"{o}lder's inequality, and the power-mean inequality, a series of novel inequalities are deduced. These newly acquired inequalities are fortified through insightful illustrative examples, bolstered by rigorous proofs. Furthermore, to lend visual validation, graphical representations are meticulously crafted for the showcased examples.
References
- [1] S. S. Dragomir, C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.
- [2] S. S. Dragomir, R. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11(5) (1998), 91–95.
- [3] S. S. Dragomir, On trapezoid quadrature formula and applications, Kragujevac J. Math., 23 (2001), 25–36.
- [4] M. Z. Sarıkaya, N. Aktan, On the generalization of some integral inequalities and their applications, Math. Comput. Model., 54(9-10) (2011), 2175–2182.
- [5] M. Z. Sarıkaya, H. Budak, Some Hermite-Hadamard type integral inequalities for twice differentiable mappings via fractional integrals, Facta Univ. Ser. Math. Inform., 29(4) (2014), 371–384.
- [6] M. Z. Sarıkaya, E. Set, H. Yaldiz, N. Basak, Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57(9-10) (2013), 2403–2407
- [7] U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula, Appl. Math. Comput., 147(5) (2004), 137–146.
- [8] M. Z. Sarikaya, A. Saglam, H. Yıldırım, New inequalities of Hermite-Hadamard type for functions whose second derivatives absolute values are convex and quasi-convex, Int. J. Open Probl. Comput. Sci. Math., 5(3) (2012), 1–14.
- [9] M. Iqbal, M. I. Bhatti, K. Nazeer, Generalization of inequalities analogous to Hermite–Hadamard inequality via fractional integrals, Bull. Korean Math. Soc., 52(3) (2015), 707–716.
- [10] M.Z. Sarikaya, H. Yildirim, On Hermite–Hadamard type inequalities for Riemann-Liouville fractional integrals, Miskolc Math. Notes, 17(2)(2016), 1049–1059.
- [11] S. Hussain, S. Qaisar, More results on Simpson’s type inequality through convexity for twice differentiable continuous mappings, SpringerPlus, 5(1) (2016), 1–9.
- [12] J. Nasir, S. Qaisar, S. I. Butt, A. Qayyum, Some Ostrowski type inequalities for mappings whose second derivatives are preinvex function via fractional integral operator, AIMS Mathematics, 7(3) (2022), 3303–3320.
- [13] M. Z. Sarikaya, E. Set, M. E. Özdemir, On new inequalities of Simpson’s type for functions whose second derivatives absolute values are convex, J. Appl. Math. Stat. Inform., 9(1) (2013), 37–45.
- [14] H. Budak, P. K¨osem, H. Kara, On new Milne-type inequalities for fractional integrals, J. Inequal. Appl., (2023), Art. 10.
- [15] A. D. Booth, Numerical methods, 3rd Ed., Butterworths, California, 1966.
- [16] H. Budak, A. A. Hyder, Enhanced bounds for Riemann-Liouville fractional integrals: Novel variations of Milne inequalities, AIMS Mathematics, 8(12) (2023), 30760–30776.
- [17] P. Bosch, J. M. Rodr´ıguez, J. M Sigarreta, On new Milne-type inequalities and applications, J. Inequal. Appl., (2023), Art. 3.
- [18] B. Meftah, A. Lakhdari, W. Saleh, A. Kilic¸man, Some new fractal Milne-type integral inequalities via generalized convexity with applications, Fractal Fract., 7(2) (2023), Art. 166.
- [19] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 204, Elsevier Sci. B. V., Amsterdam, 2006.
- [20] R. Gorenflo, F. Mainardi, Fractional calculus: integral and differential equations of fractional order, Wien: Springer-Verlag, 1997, 223–276.
- [21] S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, New York, 1993.
Year 2024,
Volume: 7 Issue: 1, 30 - 37, 18.03.2024
Henok Desalegn Desta
,
Hüseyin Budak
,
Hasan Kara
References
- [1] S. S. Dragomir, C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.
- [2] S. S. Dragomir, R. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11(5) (1998), 91–95.
- [3] S. S. Dragomir, On trapezoid quadrature formula and applications, Kragujevac J. Math., 23 (2001), 25–36.
- [4] M. Z. Sarıkaya, N. Aktan, On the generalization of some integral inequalities and their applications, Math. Comput. Model., 54(9-10) (2011), 2175–2182.
- [5] M. Z. Sarıkaya, H. Budak, Some Hermite-Hadamard type integral inequalities for twice differentiable mappings via fractional integrals, Facta Univ. Ser. Math. Inform., 29(4) (2014), 371–384.
- [6] M. Z. Sarıkaya, E. Set, H. Yaldiz, N. Basak, Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57(9-10) (2013), 2403–2407
- [7] U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula, Appl. Math. Comput., 147(5) (2004), 137–146.
- [8] M. Z. Sarikaya, A. Saglam, H. Yıldırım, New inequalities of Hermite-Hadamard type for functions whose second derivatives absolute values are convex and quasi-convex, Int. J. Open Probl. Comput. Sci. Math., 5(3) (2012), 1–14.
- [9] M. Iqbal, M. I. Bhatti, K. Nazeer, Generalization of inequalities analogous to Hermite–Hadamard inequality via fractional integrals, Bull. Korean Math. Soc., 52(3) (2015), 707–716.
- [10] M.Z. Sarikaya, H. Yildirim, On Hermite–Hadamard type inequalities for Riemann-Liouville fractional integrals, Miskolc Math. Notes, 17(2)(2016), 1049–1059.
- [11] S. Hussain, S. Qaisar, More results on Simpson’s type inequality through convexity for twice differentiable continuous mappings, SpringerPlus, 5(1) (2016), 1–9.
- [12] J. Nasir, S. Qaisar, S. I. Butt, A. Qayyum, Some Ostrowski type inequalities for mappings whose second derivatives are preinvex function via fractional integral operator, AIMS Mathematics, 7(3) (2022), 3303–3320.
- [13] M. Z. Sarikaya, E. Set, M. E. Özdemir, On new inequalities of Simpson’s type for functions whose second derivatives absolute values are convex, J. Appl. Math. Stat. Inform., 9(1) (2013), 37–45.
- [14] H. Budak, P. K¨osem, H. Kara, On new Milne-type inequalities for fractional integrals, J. Inequal. Appl., (2023), Art. 10.
- [15] A. D. Booth, Numerical methods, 3rd Ed., Butterworths, California, 1966.
- [16] H. Budak, A. A. Hyder, Enhanced bounds for Riemann-Liouville fractional integrals: Novel variations of Milne inequalities, AIMS Mathematics, 8(12) (2023), 30760–30776.
- [17] P. Bosch, J. M. Rodr´ıguez, J. M Sigarreta, On new Milne-type inequalities and applications, J. Inequal. Appl., (2023), Art. 3.
- [18] B. Meftah, A. Lakhdari, W. Saleh, A. Kilic¸man, Some new fractal Milne-type integral inequalities via generalized convexity with applications, Fractal Fract., 7(2) (2023), Art. 166.
- [19] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 204, Elsevier Sci. B. V., Amsterdam, 2006.
- [20] R. Gorenflo, F. Mainardi, Fractional calculus: integral and differential equations of fractional order, Wien: Springer-Verlag, 1997, 223–276.
- [21] S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, New York, 1993.