Research Article
BibTex RIS Cite

On Linear Combinations of Harmonic Mappings Convex in the Horizontal Direction

Year 2024, Volume: 7 Issue: 4, 163 - 169, 09.12.2024
https://doi.org/10.32323/ujma.1466419

Abstract

The process of creating univalent harmonic mappings which are not analytic is not simple or straightforward. One efficient method for constructing desired univalent harmonic maps is by taking the linear combination of two suitable harmonic maps. In this study, we take into account two harmonic, univalent, and convex in the horizontal direction mappings, which are horizontal shears of $\Psi_{m}(z)=\frac{1}{2i\sin \gamma_{m}}\log \left( \frac{ 1+ze^{i\gamma_{m}}}{%
1+ze^{-^{i\gamma_{m}}}}\right),$ and have dilatations $\omega _{1}(z)=z,$
$\omega _{2}(z)=\frac{z+b}{1+bz},$ $b\in (-1,1).$ We obtain sufficient conditions for the linear combination of these two harmonic mappings to be univalent and convex in the
horizontal direction. In addition, we provide an example to illustrate the
result graphically with the help of Maple.

References

  • [1] H. Lewy, On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc., 42 (1936), 689-692.
  • [2] J. Clunie, T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Math., 9 (1984), 3-25.
  • [3] P. Duren, Harmonic Mapping In The Plane, Cambridge University Press, Cambridge, 2004.
  • [4] S. Çakmak, E. Yaşar, S. Yalçın, Convolutions of harmonic mappings convex in the horizontal direction, J. Funct. Spaces, 2021 (2021), Article ID 2949573, 9 pages, doi:10.1155/2021/2949573.
  • [5] M. Dorff, J. Rolf, (Eds.), Anamorphosis, Mapping Problems, and Harmonic Univalent Functions, in Explorations in Complex Analysis, Math. Assoc. of America, Inc., Washington DC, 2012.
  • [6] B. Long, M. Dorff, Linear combinations of a class of harmonic univalent mappings, Filomat, 32(9) (2018), 3111-3121.
  • [7] R. Kumar, S. Gupta, S. Singh, Linear combinations of univalent harmonic mappings convex in the direction of the imaginary axis, Bull. Malays. Math. Sci. Soc., 39(2) (2016), 751-763.
  • [8] Z. G. Wang, Z. H. Liu, Y. C. Li, On the linear combinations of harmonic univalent mappings, J. Math. Anal. Appl., 400(2) (2013), 452-459.
  • [9] M. Demirçay, Linear combinations of harmonic univalent functions, Master’s Thesis, Bursa Uludag University, 2023.
  • [10] M. Demirçay, E. Yaşar, Linear Combinations of Harmonic Univalent Mappings Convex In The Horizontal Direction, 1st International Conference on Engineering and Applied Natural Sciences, Konya, T¨urkiye, (2022), 1595.
  • [11] Q. I. Rahman, G. Schmeisser, Analytic Theory Of Polynomials, London Mathematical Society Monographs New Series, Vol. 26, Oxford University Press, Oxford, 2002.
  • [12] A. Aleman, A. Constantin, Harmonic maps and ideal fluid flows, Arch. Ration. Mech. Anal., 204 (2012), 479–513.

On Linear Combinations Of Harmonic Mappings Convex In The Horizontal Direction

Year 2024, Volume: 7 Issue: 4, 163 - 169, 09.12.2024
https://doi.org/10.32323/ujma.1466419

Abstract

The process of creating univalent harmonic mappings which are not analytic is not simple or straightforward. One efficient method for constructing desired univalent harmonic maps is by taking the linear combination of two suitable harmonic maps. In this study, we take into account two harmonic, univalent, and convex in the horizontal direction mappings, which are horizontal shears of $\Psi_{m}(z)=\frac{1}{2i\sin \gamma_{m}}\log \left( \frac{ 1+ze^{i\gamma_{m}}}{%
1+ze^{-^{i\gamma_{m}}}}\right),$ and have dilatations $\omega _{1}(z)=z,$
$\omega _{2}(z)=\frac{z+b}{1+bz},$ $b\in (-1,1).$ We obtain sufficient conditions for the linear combination of these two harmonic mappings to be univalent and convex in the
horizontal direction. In addition, we provide an example to illustrate the
result graphically with the help of Maple.

References

  • [1] H. Lewy, On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc., 42 (1936), 689-692.
  • [2] J. Clunie, T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Math., 9 (1984), 3-25.
  • [3] P. Duren, Harmonic Mapping In The Plane, Cambridge University Press, Cambridge, 2004.
  • [4] S. Çakmak, E. Yaşar, S. Yalçın, Convolutions of harmonic mappings convex in the horizontal direction, J. Funct. Spaces, 2021 (2021), Article ID 2949573, 9 pages, doi:10.1155/2021/2949573.
  • [5] M. Dorff, J. Rolf, (Eds.), Anamorphosis, Mapping Problems, and Harmonic Univalent Functions, in Explorations in Complex Analysis, Math. Assoc. of America, Inc., Washington DC, 2012.
  • [6] B. Long, M. Dorff, Linear combinations of a class of harmonic univalent mappings, Filomat, 32(9) (2018), 3111-3121.
  • [7] R. Kumar, S. Gupta, S. Singh, Linear combinations of univalent harmonic mappings convex in the direction of the imaginary axis, Bull. Malays. Math. Sci. Soc., 39(2) (2016), 751-763.
  • [8] Z. G. Wang, Z. H. Liu, Y. C. Li, On the linear combinations of harmonic univalent mappings, J. Math. Anal. Appl., 400(2) (2013), 452-459.
  • [9] M. Demirçay, Linear combinations of harmonic univalent functions, Master’s Thesis, Bursa Uludag University, 2023.
  • [10] M. Demirçay, E. Yaşar, Linear Combinations of Harmonic Univalent Mappings Convex In The Horizontal Direction, 1st International Conference on Engineering and Applied Natural Sciences, Konya, T¨urkiye, (2022), 1595.
  • [11] Q. I. Rahman, G. Schmeisser, Analytic Theory Of Polynomials, London Mathematical Society Monographs New Series, Vol. 26, Oxford University Press, Oxford, 2002.
  • [12] A. Aleman, A. Constantin, Harmonic maps and ideal fluid flows, Arch. Ration. Mech. Anal., 204 (2012), 479–513.
There are 12 citations in total.

Details

Primary Language English
Subjects Pure Mathematics (Other)
Journal Section Articles
Authors

Elif Yaşar 0000-0003-0176-4961

Early Pub Date October 28, 2024
Publication Date December 9, 2024
Submission Date April 7, 2024
Acceptance Date October 13, 2024
Published in Issue Year 2024 Volume: 7 Issue: 4

Cite

APA Yaşar, E. (2024). On Linear Combinations of Harmonic Mappings Convex in the Horizontal Direction. Universal Journal of Mathematics and Applications, 7(4), 163-169. https://doi.org/10.32323/ujma.1466419
AMA Yaşar E. On Linear Combinations of Harmonic Mappings Convex in the Horizontal Direction. Univ. J. Math. Appl. December 2024;7(4):163-169. doi:10.32323/ujma.1466419
Chicago Yaşar, Elif. “On Linear Combinations of Harmonic Mappings Convex in the Horizontal Direction”. Universal Journal of Mathematics and Applications 7, no. 4 (December 2024): 163-69. https://doi.org/10.32323/ujma.1466419.
EndNote Yaşar E (December 1, 2024) On Linear Combinations of Harmonic Mappings Convex in the Horizontal Direction. Universal Journal of Mathematics and Applications 7 4 163–169.
IEEE E. Yaşar, “On Linear Combinations of Harmonic Mappings Convex in the Horizontal Direction”, Univ. J. Math. Appl., vol. 7, no. 4, pp. 163–169, 2024, doi: 10.32323/ujma.1466419.
ISNAD Yaşar, Elif. “On Linear Combinations of Harmonic Mappings Convex in the Horizontal Direction”. Universal Journal of Mathematics and Applications 7/4 (December 2024), 163-169. https://doi.org/10.32323/ujma.1466419.
JAMA Yaşar E. On Linear Combinations of Harmonic Mappings Convex in the Horizontal Direction. Univ. J. Math. Appl. 2024;7:163–169.
MLA Yaşar, Elif. “On Linear Combinations of Harmonic Mappings Convex in the Horizontal Direction”. Universal Journal of Mathematics and Applications, vol. 7, no. 4, 2024, pp. 163-9, doi:10.32323/ujma.1466419.
Vancouver Yaşar E. On Linear Combinations of Harmonic Mappings Convex in the Horizontal Direction. Univ. J. Math. Appl. 2024;7(4):163-9.

 23181

Universal Journal of Mathematics and Applications 

29207              

Creative Commons License  The published articles in UJMA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.