Year 2025,
Volume: 8 Issue: 1, 8 - 20
Mudasir Younıs
,
Mahpeyker Öztürk
References
- [1] M. M. Frechet, Sur quelques points du calcul fonctionnel, Rend. Circ. Mat. Palermo, 22(1) (1906), 1-72.
- [2] T. Kamran, M. Samreen, Q. Ul. Ain, A generalization of b-metric space and some fixed point theorems, Math., 5(2) (2017), 1-19.
- [3] S. Basha, P. Veeramani, Best approximations and best proximity pairs, Acta Sci. Math, 63 (1997), 289-300.
- [4] S. Basha and P. Veeramani, Best proximity pair theorems for multifunction with open fibers, J. Approx. Theory, 103(1) (2000), 119-129.
- [5] S. Ghezellou, M. Azhini, M. Asadi, Best proximity point theorems by K, C and MT types in b-metric spaces with an application. Int. J. Nonlinear Anal. Appl., 12(2) (2021), 1317-1329.
- [6] T. Suzuki, M. Kikkawa, C. Vetro, The existence of best proximity points in metric spaces with the property UC, Nonlinear Anal., 71(7-8) (2009), 2918-2926.
- [7] M. Asadi, M. Afshar, Fixed point theorems in the generalized rational type of C-class functions in b-metric spaces with application to integral equation. 3c Empresa: Investigaci´on y pensamiento crtico, 11(2) (2022), 64-74.
- [8] B. Alqahtani, A. Fulg, E. Karapınar, Common fixed point results on an extended b-metric space, J. Inequal. Appl., 2018(1) (2018), 1-15.
- [9] S. Chandok, E. Karapinar, Common fixed point of generalized rational type contraction mappings in partially ordered metric spaces, Thai J. Math., 11(2) (2012), 251-260.
- [10] S. Jabeen, S. Ur Rehman, Z. Zheng, W. Wei, Weakly compatible and quasi-contraction results in fuzzy cone metric spaces with application to the Urysohn type integral equations, Adv. Differ. Equ., 2020, 280. https://doi.org/10.1186/s13662-020-02743-5
- [11] R. McConnell, R. Kwok, J. Curlander, W. Kober, S. Pang, Y-S correlation and dynamic time warping: Two methods for tracking ice floes, IEEE Trans. Geosci. Remote Sens., 29 (1991), 1004–1012.
- [12] M. Younis, D. Singh, I. Altun, V. Chauhan, Graphical structure of extended b-metric spaces: An application to the transverse oscillations of a homogeneous bar, Internat. J. Nonlinear Sci. Numer. Simul., 23(7-8) (2022), 1239-1252. https://doi.org/10.1515/ijnsns-2020-0126
- [13] M. Younis, H. Ahmad, L. Chen, M. Han, Computation and convergence of fixed points in graphical spaces with an application to elastic beam deformations, J. Geom. Phys., 192 (2023), 104955. https://doi.org/10.1016/j.geomphys.2023.104955.
- [14] M. Younis, D. Singh, M. Asadi, V. Joshi, Results on contractions of Reich type in graphical b-metric spaces with applications, Filomat, 33(17) (2019), 5723-5735.
- [15] M. E. Samani, S. M. Vaezpour, M. Asadi, New fixed point results with aqsp -admissible contractions on b-Branciari metric spaces, J. Inequal. Spec. Funct., 9(4) (2018), 101-112.
- [16] N. Savanovic, I. D. Arandelovic, Z. D. Mitrovic, The results on coincidence and common fixed points for a new type multi-valued mappings in b-metric spaces, Math., 10(6) (2022), 856.
- [17] M. Younis, H. Ahmad, W. Shahid, Best proximity points for multi-valued mappings and equation of motion, J. Appl. Anal. Comput., 14(1) (2024),
298-316.
- [18] V. S. Raj, A best proximity point theorem for weakly contractive non-self-mappings, Nonlinear. Anal., 74(2011), 4804–4808.
- [19] T. R. Rockafellar, R. J. V. Wets, Variational Analysis, Springer Berlin, Germany, (2005).
- [20] M. Gabeleh, C. Vetro, A note on best proximity point theory using proximal-contractions, J. Fixed Point Theory Appl., 20(4) (2018), 1-11.
- [21] N. Saleem, J. Vujakovi´c, W.U. Baloch, S. Radenovic, Coincidence point results for multi-valued Suzuki type mappings using q-contraction in b-metric spaces, Math., 7(11) (2019), 1017.
- [22] M.S. Khan, M. Ozair, T. Hussain, J. F. Gomez-Aguilar, Bifurcation analysis of a discrete-time compartmental model for hypertensive or diabetic patients exposed to COVID-19, The European Physical Journal Plus, 136(8), (2021), 1-26.
- [23] A. A. N. Abdou, Solving a nonlinear fractional differential equation using fixed point results in orthogonal metric spaces, Fractal Fract., 7(11) (2023), 817. https://doi.org/10.3390/fractalfract7110817
- [24] N. I. Hamdan, S. A., Kechil, Mathematical model of COVID-19 transmission using the fractional-order differential equation. In AIP Conference Proceedings, AIP Publishing, 2905(1) (2024).
- [25] A. Cabada, Z. Hamdi, Nonlinear fractional differential equations with integral boundary value conditions, Appl. Math. Comput., 228(1) (2014), 251-257.
Some Novel Proximal Point Results and Applications
Year 2025,
Volume: 8 Issue: 1, 8 - 20
Mudasir Younıs
,
Mahpeyker Öztürk
Abstract
The current study provides significant findings on coincidence the best proximity points for proximal-contractions in the context of extended $b$-metric spaces. To substantiate our assertions, we present illustrative examples across several circumstances. The conclusions presented in this study provide an expanded and more nuanced viewpoint, extending and generalizing multiple previous findings in optimal proximity theory. These findings present a new method for comprehending proximal coincidence locations in multi-valued mappings, representing a substantial advancement in the existing research landscape. This work gives practical benchmarks for implementing optimal proximity results, provided that existence and uniqueness constraints are met.
References
- [1] M. M. Frechet, Sur quelques points du calcul fonctionnel, Rend. Circ. Mat. Palermo, 22(1) (1906), 1-72.
- [2] T. Kamran, M. Samreen, Q. Ul. Ain, A generalization of b-metric space and some fixed point theorems, Math., 5(2) (2017), 1-19.
- [3] S. Basha, P. Veeramani, Best approximations and best proximity pairs, Acta Sci. Math, 63 (1997), 289-300.
- [4] S. Basha and P. Veeramani, Best proximity pair theorems for multifunction with open fibers, J. Approx. Theory, 103(1) (2000), 119-129.
- [5] S. Ghezellou, M. Azhini, M. Asadi, Best proximity point theorems by K, C and MT types in b-metric spaces with an application. Int. J. Nonlinear Anal. Appl., 12(2) (2021), 1317-1329.
- [6] T. Suzuki, M. Kikkawa, C. Vetro, The existence of best proximity points in metric spaces with the property UC, Nonlinear Anal., 71(7-8) (2009), 2918-2926.
- [7] M. Asadi, M. Afshar, Fixed point theorems in the generalized rational type of C-class functions in b-metric spaces with application to integral equation. 3c Empresa: Investigaci´on y pensamiento crtico, 11(2) (2022), 64-74.
- [8] B. Alqahtani, A. Fulg, E. Karapınar, Common fixed point results on an extended b-metric space, J. Inequal. Appl., 2018(1) (2018), 1-15.
- [9] S. Chandok, E. Karapinar, Common fixed point of generalized rational type contraction mappings in partially ordered metric spaces, Thai J. Math., 11(2) (2012), 251-260.
- [10] S. Jabeen, S. Ur Rehman, Z. Zheng, W. Wei, Weakly compatible and quasi-contraction results in fuzzy cone metric spaces with application to the Urysohn type integral equations, Adv. Differ. Equ., 2020, 280. https://doi.org/10.1186/s13662-020-02743-5
- [11] R. McConnell, R. Kwok, J. Curlander, W. Kober, S. Pang, Y-S correlation and dynamic time warping: Two methods for tracking ice floes, IEEE Trans. Geosci. Remote Sens., 29 (1991), 1004–1012.
- [12] M. Younis, D. Singh, I. Altun, V. Chauhan, Graphical structure of extended b-metric spaces: An application to the transverse oscillations of a homogeneous bar, Internat. J. Nonlinear Sci. Numer. Simul., 23(7-8) (2022), 1239-1252. https://doi.org/10.1515/ijnsns-2020-0126
- [13] M. Younis, H. Ahmad, L. Chen, M. Han, Computation and convergence of fixed points in graphical spaces with an application to elastic beam deformations, J. Geom. Phys., 192 (2023), 104955. https://doi.org/10.1016/j.geomphys.2023.104955.
- [14] M. Younis, D. Singh, M. Asadi, V. Joshi, Results on contractions of Reich type in graphical b-metric spaces with applications, Filomat, 33(17) (2019), 5723-5735.
- [15] M. E. Samani, S. M. Vaezpour, M. Asadi, New fixed point results with aqsp -admissible contractions on b-Branciari metric spaces, J. Inequal. Spec. Funct., 9(4) (2018), 101-112.
- [16] N. Savanovic, I. D. Arandelovic, Z. D. Mitrovic, The results on coincidence and common fixed points for a new type multi-valued mappings in b-metric spaces, Math., 10(6) (2022), 856.
- [17] M. Younis, H. Ahmad, W. Shahid, Best proximity points for multi-valued mappings and equation of motion, J. Appl. Anal. Comput., 14(1) (2024),
298-316.
- [18] V. S. Raj, A best proximity point theorem for weakly contractive non-self-mappings, Nonlinear. Anal., 74(2011), 4804–4808.
- [19] T. R. Rockafellar, R. J. V. Wets, Variational Analysis, Springer Berlin, Germany, (2005).
- [20] M. Gabeleh, C. Vetro, A note on best proximity point theory using proximal-contractions, J. Fixed Point Theory Appl., 20(4) (2018), 1-11.
- [21] N. Saleem, J. Vujakovi´c, W.U. Baloch, S. Radenovic, Coincidence point results for multi-valued Suzuki type mappings using q-contraction in b-metric spaces, Math., 7(11) (2019), 1017.
- [22] M.S. Khan, M. Ozair, T. Hussain, J. F. Gomez-Aguilar, Bifurcation analysis of a discrete-time compartmental model for hypertensive or diabetic patients exposed to COVID-19, The European Physical Journal Plus, 136(8), (2021), 1-26.
- [23] A. A. N. Abdou, Solving a nonlinear fractional differential equation using fixed point results in orthogonal metric spaces, Fractal Fract., 7(11) (2023), 817. https://doi.org/10.3390/fractalfract7110817
- [24] N. I. Hamdan, S. A., Kechil, Mathematical model of COVID-19 transmission using the fractional-order differential equation. In AIP Conference Proceedings, AIP Publishing, 2905(1) (2024).
- [25] A. Cabada, Z. Hamdi, Nonlinear fractional differential equations with integral boundary value conditions, Appl. Math. Comput., 228(1) (2014), 251-257.