Research Article
BibTex RIS Cite

Weddle's Inequality via Katugampola Fractional Integrals

Year 2025, Volume: 8 Issue: 4, 179 - 194, 11.12.2025
https://doi.org/10.32323/ujma.1752277

Abstract

Integral inequalities represent an important and ongoing area of study in mathematical understanding. Due to their extensive use in science, fractional calculus approaches have been the subject of a great deal of research recently. An important concept in fractional calculus is the Katugampola fractional integral. In this work, we aim to investigate Weddle's type integral inequalities involving the Katugampola integral operators for functions whose first derivatives are convex. In order to accomplish this, we first suggest a novel integral identity. We develop several new fractional Weddle-like type inequalities using this identity. Special means and quadrature formula applications are given.

References

  • [1] PJ. Davis, P. Rabinowitz, Methods of Numerical Integration, Academic Press, New York, 1975.
  • [2] Q. Liu, M. Z. Javed, M. U. Awan, Y. Wang, A. M. Zidan, Weddle’s inequalities in fractional space, Ain Shams Eng. J., 16(10) (2025), Article ID 103550. https://doi.org/10.1016/j.asej.2025.103550
  • [3] A. Mateen, H. Budak, A. Kashuri, Z. Zhang, Comprehensive study of Weddle’s formula-type inequalities for convex functions within the framework of quantum calculus and their computational analysis, J. Inequal. Appl., 2025 (2025), Article ID 64. https://doi.org/10.1186/s13660-025-03311-9
  • [4] B. Benaissa, N. Azzouz, Hermite-Hadamard-Fejer type inequalities for h-convex functions involving Ψ-Hilfer operators, J. Inequal. Math. Anal., 1(2) (2025), 113-123. https://doi.org/10.63286/jima.015
  • [5] B. Meftah, D. Benchettah, A. Lakhdari, Some new local fractional Newton-type inequalities, J. Inequal. Math. Anal., 1(2) (2025), 79-96. https://doi.org/10.63286/jima.008
  • [6] I. Podlubny, Fractional Differential Equations, Math. Sci. Eng., Academic Press, San Diego, CA, 1999. https://doi.org/10.1016/s0076-5392(99)x8001-5
  • [7] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Amsterdam, 1993.
  • [8] A. Mateen, Z. Zhang, H. Budak, S. Özcan, Some novel inequalities of Weddle’s formula type for Riemann–Liouville fractional integrals with their applications to numerical integration, Chaos Solitons Fractals, 192 (2025), Article ID 115973. https://doi.org/10.1016/j.chaos.2024.115973
  • [9] H. Hudzik, L. Maligranda, Some remarks on s-convex functions, Aequ. Math., 48 (1994), 100-111. https://doi.org/10.1007/BF01837981
  • [10] A. Mateen, B. Bin-Mohsin, G. H. Tipu, A. Shehzadi, Error estimation of Weddle’s rule for generalized convex functions with applications to numerical integration and computational analysis, Mathematics, 13(17) (2025), Article ID 2874. https://doi.org/10.3390/math13172874
  • [11] F. Jarad, E. Uğurlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Differ.Equ., 2017 (2017), Article ID 247. https://doi.org/10.1186/s13662-017-1306-z
  • [12] A. R. DiDonato, M. P. Jarnagin, The efficient calculation of the incomplete beta-function ratio for half-integer values of the parameters a,b, Math. Comput., 21 (1967), 652-662. https://doi.org/10.1090/S0025-5718-1967-0221730-X
  • [13] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Math. Stud., Vol. 204, Elsevier Science B.V., Amsterdam, 2006. https://doi.org/10.1016/S0304-0208(06)80001-0
  • [14] A. Lakhdari, N. Mlaiki, W. Saleh, T. Abdeljawad, B. Meftah, Exploring conformable fractional integral inequalities: A multi-parameter approach, Fractals, 33(7) (2025), Article ID 2550055. https://doi.org/10.1142/S0218348X25500550
  • [15] U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218(3) (2011), 860–865. https://doi.org/10.1016/j.amc.2011.03.062
  • [16] D. Boucenna, A. B. Makhlouf, M. A. Hammami, On Katugampola fractional order derivatives and Darboux problem for differential equations, Cubo., 22(1) (2020), 125-136. http://dx.doi.org/10.4067/S0719-06462020000100125
  • [17] H. Chen, U. N. Katugampola, Hermite–Hadamard and Hermite–Hadamard–Fejer type inequalities for generalized fractional integrals, J. Math. Anal. Appl., 446(2) (2017), 1274-1291. https://doi.org/10.1016/j.jmaa.2016.09.018
  • [18] U. N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6(4) (2014), 1–15.
  • [19] S. Kermausuor, Simpson’s type inequalities via the Katugampola fractional integrals for s-convex functions, Kragujevac J. Math., 45(5) (2021), 709–720.
  • [20] B. Y. Xi, F. Qi, Inequalities of Hermite-Hadamard type for extended s-convex functions and applications to means, J. Nonlinear Convex Anal., 16(5) (2015), 873–890.
  • [21] A. Lakhdari, H. Budak, M. U. Awan, B. Meftah, Extension of Milne-type inequalities to Katugampola fractional integrals, Bound. Value Probl., 2024 (2024), Article ID 100. https://doi.org/10.1186/s13661-024-01909-4
  • [22] I. Iscan, Ostrowski type inequalities for p-convex functions, New Trends Math. Sci., 4 (2016), 140–150.
  • [23] Y. Yu, H. Lei, G. Hu, T. Du, Estimates of upper bound for differentiable mappings related to Katugampola fractional integrals and p-convex mappings, AIMS Math., 6(4) (2021), 3525-3545. https://doi.org/10.3934/math.2021210
  • [24] B. Y. Xi, F. Qi, Some integral inequalities of Hermite-Hadamard type for $s$-logarithmically convex functions, Acta Math. Sci. Engl. Ser., 35A(3) (2015), 515–526. https://doi.org/10.13140/RG.2.1.4385.9044
  • [25] D. Ai, T. Du, A study on Newton-type inequalities bounds for twice ∗differentiable functions under multiplicative Katugampola fractional integrals, Fractals, 33(5) (2025), Article ID 2550032. https://doi.org/10.1142/S0218348X2550032X
  • [26] W. Saleh, B. Meftah, M. U. Awan, A. Lakhdari, On Katugampola fractional multiplicative Hermite-Hadamard-type inequalities, Mathematics, 13(10) (2025), Article ID 1575. https://doi.org/10.3390/math13101575
  • [27] G. Hu, H. Lei, T. S. Du, Some parameterized integral inequalities for p-convex mappings via the right Katugampola fractional integrals, AIMS Math., 5(2) (2020), 1425-1445. https://doi.org/10.3934/math.2020098
  • [28] C. E. M. Pearce, J. Pečarić, Inequalities for differentiable mappings with application to special means and quadrature formula, Appl. Math. Lett., 13(2) (2000), 51-55. https://doi.org/10.1016/S0893-9659(99)00164-0
There are 28 citations in total.

Details

Primary Language English
Subjects Pure Mathematics (Other)
Journal Section Research Article
Authors

Jamal El-achky 0000-0002-6321-4415

Early Pub Date November 27, 2025
Publication Date December 11, 2025
Submission Date July 27, 2025
Acceptance Date November 4, 2025
Published in Issue Year 2025 Volume: 8 Issue: 4

Cite

APA El-achky, J. (2025). Weddle’s Inequality via Katugampola Fractional Integrals. Universal Journal of Mathematics and Applications, 8(4), 179-194. https://doi.org/10.32323/ujma.1752277
AMA El-achky J. Weddle’s Inequality via Katugampola Fractional Integrals. Univ. J. Math. Appl. December 2025;8(4):179-194. doi:10.32323/ujma.1752277
Chicago El-achky, Jamal. “Weddle’s Inequality via Katugampola Fractional Integrals”. Universal Journal of Mathematics and Applications 8, no. 4 (December 2025): 179-94. https://doi.org/10.32323/ujma.1752277.
EndNote El-achky J (December 1, 2025) Weddle’s Inequality via Katugampola Fractional Integrals. Universal Journal of Mathematics and Applications 8 4 179–194.
IEEE J. El-achky, “Weddle’s Inequality via Katugampola Fractional Integrals”, Univ. J. Math. Appl., vol. 8, no. 4, pp. 179–194, 2025, doi: 10.32323/ujma.1752277.
ISNAD El-achky, Jamal. “Weddle’s Inequality via Katugampola Fractional Integrals”. Universal Journal of Mathematics and Applications 8/4 (December2025), 179-194. https://doi.org/10.32323/ujma.1752277.
JAMA El-achky J. Weddle’s Inequality via Katugampola Fractional Integrals. Univ. J. Math. Appl. 2025;8:179–194.
MLA El-achky, Jamal. “Weddle’s Inequality via Katugampola Fractional Integrals”. Universal Journal of Mathematics and Applications, vol. 8, no. 4, 2025, pp. 179-94, doi:10.32323/ujma.1752277.
Vancouver El-achky J. Weddle’s Inequality via Katugampola Fractional Integrals. Univ. J. Math. Appl. 2025;8(4):179-94.

 23181

Universal Journal of Mathematics and Applications 

29207               

Creative Commons License  The published articles in UJMA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.