Research Article
BibTex RIS Cite

İŞ STRESİNİN PROAKTİF DAVRANIŞ ÜZERİNDEKİ ETKİSİNDE YAPAY ZEKÂ GENEL TUTUMUN MODERATÖR ROLÜ

Year 2025, Issue: 49, 313 - 328
https://doi.org/10.18092/ulikidince.1716295

Abstract

Bu çalışmanın amacı, Duygusal Olaylar Teorisi temelinde iş stresinin proaktif davranış üzerindeki etkisinde yapay zekâya yönelik genel tutumun moderatör rolünü incelemektir. Araştırmanın örneklemini sağlık çalışanları oluşturmaktadır. Veriler, kolayda örneklem yöntemi, boylamsal veri toplama tasarımı benimsenerek iki farklı zamanda toplanmış, elde edilen 205 katılımcıdan gelen veriler basit doğrusal regresyon, PROCESS Macro (Model 1) ile analiz edilmiştir. Analiz sonuçları, yapay zekâya yönelik genel tutumun iş stresi ile proaktif davranış arasındaki ilişkide moderatör rolü üstlendiğini göstermiştir. Bu çalışma, Duygusal Olaylar Teorisi'nin yapay zekâ temelli teorik bir bakış açısıyla geliştirilmesine katkı sağlamaktadır. Bir diğer özgün yönü ise, araştırmada yapay zekâ temelli bir analiz yaklaşımı kullanılmış olmasıdır. Bu yönüyle bu araştırma, geleneksel analiz yöntemlerinin sonuçlarıyla yapay zekâya dayalı analiz yaklaşımlarının karşılaştırılmasına da katkı sağlamaktadır.

Ethical Statement

E-95674917-108.99-322070 numaralı sayı ile Gümüşhane Üniversitesi Etik Kurulundan araştırma izni alınmıştır

Supporting Institution

Gümüşhane Üniversitesi

References

  • American Institute of Stress (2024). Workplace Stress. Retrieved from https://www.stress.org /workplace-stress/
  • Batuk, B., Kaya, A., Yıldırım, O., & Türk, N. (2024). Investigation of Variables Predicting University Students Acceptance Levels of Generative Artificial Intelligence. 25. Uluslararası Psikolojik Danışmanlık ve Rehberlik Kongresi, Ankara.
  • Bekar, F. (2022) İşin Anlamlılığı ve İşe Yabancılaşmanın Proaktif Davranış ile İlişkisi: İşte Kendini Geliştirmenin Aracılık Etkisi. (Yayınlanmamış Doktora Tezi). Gümüşhane Üniversitesi Lisansüstü Eğitim Enstitüsü. Gümüşhane.
  • Bozkurt, S. (2023). Process Makro ile Aracılık, Düzenleyicilik ve Durumsal Aracılık Etki Analizleri (SPSS Uygulamalı). Bursa: Ekin Yayınevi.
  • ChatGPT (2025). Said Sürücü Statistics File Reader. Retrieved from https://chatgpt.com/g/g-ZLKnksttu-statistics-file-reader-analyzer.
  • Creswell, J. W. (2013). Qualitative Inquiry and Research Design: Choosing Among Five Approaches. SAGE.
  • Cullen‐Lester, K. L., Leroy, H., Gerbasi, A., & Nishii, L. (2016). Energy's Role In the Extraversion (Dis)Advantage: How Energy Ties and Task Conflict Help Clarify the Relationship Between Extraversion and Proactive Performance. Journal of Organizational Behavior, 37(7), 1003-1022.
  • Ding, X. Q., Chen, H., Liu, J., Liu, Y. Z., & Wang, X. H. (2025). AI-Induced Behaviors: Bridging Proactivity and Deviance Through Motivational Insights. Journal of Managerial Psychology. 1-18. DOI 10.1108/JMP-05-2024-0375
  • Du, Y., Yang, C., Zhao, Y., & Xia, Y. (2024). How The Workplace Usage of AI in China Influences Proactive Behaviour? The Role of Pride and Shame. Asia Pacific Business Review, 1-22.
  • European Commission. (2024). European Artificial Intelligence Act. Retrieved from https://artific ialintelligenceact.eu/
  • Fiori, M., Bollmann, G., & Rossier, J. (2015). Exploring The Path Through Which Career Adaptability Increases Job Satisfaction and Lowers Job Stress: The Role of Affect. Journal of Vocational Behavior, 91, 113-121.
  • Fuller, C. M., Simmering, M. J., Atinc, G., Atinc, Y., & Babin, B. J. (2016). Common Methods Variance Detection in Business Research. Journal of Business Research, 69(8), 3192–3198.
  • Fuller, J. A., Stanton, J. M., Fisher, G. G., Spitzmüller, C., Russell, S. S., & Smith, P. C. (2003). A Lengthy Look at The Daily Grind: Time Series Analysis of Events, Mood, Stress, and Satisfaction. Journal of Applied Psychology, 88(6), 1019 – 1033.
  • Grant, A. M., & Ashford, S. J. (2008). The Dynamics of Proactivity at Work. Research in Organizational Behavior, 28, 3–34. https://doi.org/10.1016/j.riob.2008.04.002
  • Grassini, S. (2023). Development and Validation of the AI Attitude Scale (AIAS-4): a Brief Measure of General Attitude Toward Artificial Intelligence. Frontiers in Psychology, 14, 1-12,1191628.
  • Griffin, M. A., Neal, A., & Parker, S. K. (2007). A New Model of Work Role Performance: Positive Behavior in Uncertain and Interdependent Contexts. Academy of Management Journal, 50(2), 327–347.
  • Gürbüz, S. (2019). Sosyal Bilimlerde Aracı, Düzenleyici ve Durumsal Etki Analizleri. Ankara: Seçkin Yayıncılık.
  • Hair, J. F., et al. (2010). Multivariate Data Analysis (7th ed.). Pearson.
  • Headspace (2024). Workforce State of Mind Report. Retrieved from https://get.headspace.com /2024-workforce-state-of-mind
  • Hu, L. T., & Bentler, P. M. (1999). Cutoff Criteria for Fit Indexes in Covariance Structure Analysis: Conventional Criteria Versus New Alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55.
  • Hughes, C., Robert, L., Frady, K., & Arroyos, A. (2019). Artificial Intelligence, Employee Engagement, Fairness, and Job Outcomes. In C. Hughes, L. Robert, K. Frady, & A. Arroyos (Eds.), Managing Technology and Middle- and Low-Skilled Employees: Advances for Economic Regeneration (pp. 61–68). Emerald Publishing Limited. https://doi.org/10.1108/9 781789730777
  • Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., ... & Wang, Y. (2017). Artificial Intelligence in Healthcare: Past, Present and Future. Stroke and Vascular Neurology, 2(4), 230–243. https://doi.org/10.1136/svn-2017-000101
  • Kalaycı, Ş. (2010). SPSS Uygulamalı Çok Değişkenli İstatistik Teknikleri (5. Baskı). Ankara, Turkey: Asil Yayın Dağıtım.
  • Kline, R. B. (2023). Principles and Practice of Structural Equation Modeling. Guilford Publications.
  • Kotrlik, J. W. K. J. W., & Higgins, C. C. H. C. C. (2001). Organizational Research: Determining Appropriate Sample Size in Survey Research Appropriate Sample Size in Survey Research. Information Technology, Learning, And Performance Journal, 19(1), 43-50.
  • Lazarus, R. S., & Folkman, S. (1984). Stress, Appraisal, and Coping. Springer.
  • Li, Z., & Guo, X. (2021). The Effect of Job Stress on Employee Proactive Behaviour: The Role of Job Remodeling. Forest Chemicals Review, 168-182.
  • Liu, C., Wang, C., Wang, H., & Xu, D. (2021). How Does Daily Family-Supportive Supervisor Behavior Relieve Subordinates' Job Stress? The Effect of Ethical Leadership and Positive Emotions. Baltic Journal of Management, 16(3), 465-478.
  • Mays, W. (1952). Can Machines Think?. Philosophy, 27(101), 148-162.
  • Mijwel, M. M. (2015). History of Artificial Intelligence. Computer Science, (April 2015), 1-6. Retrieved from https://www.researchgate.net/profile/Maad-Mijwil/publication/ 322234922_History_of_Artificial_Intelligence/links/5a4d34e5a6fdcc3e99d15c1c/History-of-Artificial-Intelligence.pdf
  • Mitchell, L. (2011). Job Satisfaction and Affective Events Theory: What Have We Learned in the Last 15 Years? Business Renaissance Quarterly, 6(2), 43–53.
  • Nie, T., Zheng, Y., & Huang, Y. (2022). Peer Attachment and Proactive Socialization Behavior: The Moderating Role of Social Intelligence. Behavioral Sciences, 12(9), 312, 1-14.
  • Ohly, S., Sonnentag, S., & Pluntke, F. (2006). Routinization, Work Characteristics and Their Relationships With Creative and Proactive Behaviors. Journal of Organizational Behavior: The International Journal of Industrial, Occupational and Organizational Psychology and Behavior, 27(3), 257-279.
  • Okan, T., & Özbek, M. F. (2016). İş Yükü Talebi, İş Tatminsizliği ve İşten Ayrılma Niyeti Arasındaki İlişkilerde İş-Aile Çatışması ve İş Stresinin Ara Değişken Rolü: Sağlık Çalışanları Örneği. Gümüshane University Electronic Journal Of The Institute Of Social Science/Gümüshane Üniversitesi Sosyal Bilimler Enstitüsü Elektronik Dergisi, 7(17). 203 – 226.
  • Özbek, M. F. (2011). Örgüt İçerisindeki Güven ve İşe Yabancilaşma İlişkisinde Örgüte Uyum Sağlamanin Araci Rolü. Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 16(1), 231-248.
  • Parasuraman, S. (1977). A study of Role Stress in Relation to Job Satisfaction, Performance, and Involvement of Middle Managers. (Doctoral dissertation). University of Illinois.
  • Parker, S. K., & Grote, G. (2022). Automation, Algorithms, and Beyond: Why Work Design Matters More Than Ever in A Digital World. Applied Psychology, 71(4), 1171-1204.
  • Qin, M., Qiu, S., Li, S., & Jiang, Z. (2025). Research on The Impact of Employee AI Identity on Employee Proactive Behavior in AI Workplace. Industrial Management & Data Systems, 125(2), 738-767.
  • Rather, R. A., Raisinghani, M., Gligor, D., Parrey, S. H., Russo, I., & Bozkurt, S. (2023). Examining Tourist Citizenship Behaviors Through Affective, Cognitive, Behavioral Engagement and Reputation: Symmetrical and Asymmetrical Approaches. Journal of Retailing and Consumer Services, 75, 1-16. 103451.
  • Satici, S. A., Okur, S., Yilmaz, F. B., & Grassini, S. (2025). Psychometric Properties and Turkish Adaptation of The Artificial Intelligence Attitude Scale (AIAS-4): Evidence for Construct Validity. BMC Psychology, 13(1), 1-14.
  • Schepman, A., & Rodway, P. (2020). Initial Validation of The General Attitudes Towards Artificial Intelligence Scale. Computers İn Human Behavior Reports, 1, 1 -13, 100014.
  • Shanafelt, T. D., Boone, S., Tan, L., Dyrbye, L. N., Sotile, W., Satele, D., ... & Oreskovich, M. R. (2012). Burnout and Satisfaction With Work-Life Balance Among US Physicians Relative to The General US Population. Archives of Internal Medicine, 172(18), 1377–1385. https://doi. org/10.1001/archinternmed.2012.3199
  • Sosik, J. J. & Godshalk, V. M. (2000), Leadership Styles, Mentoring Functions Received, and Job Related Stress: A Conceptual Model and Preliminary Study, Journal of Organizational Behavior, 21(4), 365-390.
  • Statista (2024). Artificial Intelligence – Turkey, Retrieved from https://www.statista.com/outlook /tmo/artificial-intelligence/turkey
  • Sun, C., Zhao, X., Guo, B., & Chen, N. (2025). Will Employee–AI Collaboration Enhance Employees’ Proactive Behavior? A Study Based on the Conservation of Resources Theory. Behavioral Sciences, 15(5), 648, 1-16. https:// doi.org/10.3390/bs15050648
  • Thompson, B. (2004). Exploratory And Confirmatory Factor Analysis: Understanding Concepts and Applications. Washington, DC: British Library Cataloguing-in-Publication Data.
  • Türk Dil Kurumu (2025). Yapay Zeka, Retrieved from https://sozluk.gov.tr/
  • Warshawsky, N. E., Havens, D. S., & Knafl, G. (2012). The Influence of Interpersonal Relationships On Nurse Managers' Work Engagement and Proactive Work Behavior. The Journal of Nursing Administration, 42(9), 418-425.
  • Weiss, H. M., & Cropanzano, R. (1996). Affective Events Theory. Research in Organizational Behavior, 18(1), 1-74.
  • Wu, C. H., Parker, S. K., Wu, L. Z., & Lee, C. (2018). When and Why People Engage in Different Forms of Proactive Behavior: Interactive Effects of Self-Construals and Work Characteristics. Academy of Management Journal, 61(1), 293-323.
  • Zhang, G., & Inness, M. (2019). Transformational Leadership and Employee Voice: A Model of Proactive Motivation. Leadership & Organization Development Journal.777-790.
  • Zhang, Q., Liao, G., Ran, X., & Wang, F. (2025). The Impact of AI Usage on Innovation Behavior at Work: The Moderating Role of Openness and Job Complexity. Behavioral Sciences, 15(4), 491, 1-22. https://doi.org/10.3390/ bs15040491
  • Zhou, P., Luo, J. M., & Chen, H. (2025). The Impact of Hotel Job Stress on Psychological Contracts and Proactive Behavior: The Moderating Role of Cynicism. International Journal of Contemporary Hospitality Management. 1-11.

THE MODERATING ROLE OF GENERAL ATTITUDE TOWARD ARTIFICIAL INTELLIGENCE IN THE EFFECT OF JOB STRESS ON PROACTIVE BEHAVIOR

Year 2025, Issue: 49, 313 - 328
https://doi.org/10.18092/ulikidince.1716295

Abstract

The aim of this study is to examine the moderating role of general attitude toward artificial intelligence in the effect of job stress on proactive behavior, based on Affective Events Theory. The sample of the study consisted of healthcare professionals. The data were collected at two different times using a convenience sampling method and a longitudinal research design; data from 205 participants were analyzed using simple linear regression and the PROCESS Macro (Model 1). The results of the analysis showed that general attitude toward artificial intelligence had a moderating role in the relationship between job stress and proactive behavior. This study contributes to the development of Affective Events Theory through an AI-based theoretical perspective. Another original aspect of this study is the use of an artificial intelligence-based analysis approach. In this respect, the study further contributes by comparing the results of traditional analysis methods with those of artificial intelligence-based approaches.

Ethical Statement

The research was started with the permission numbered E-95674917-108.99-322070 from the Scientific Research and Publication Ethics Committee of the University.

Supporting Institution

Gumushane Unıversity

References

  • American Institute of Stress (2024). Workplace Stress. Retrieved from https://www.stress.org /workplace-stress/
  • Batuk, B., Kaya, A., Yıldırım, O., & Türk, N. (2024). Investigation of Variables Predicting University Students Acceptance Levels of Generative Artificial Intelligence. 25. Uluslararası Psikolojik Danışmanlık ve Rehberlik Kongresi, Ankara.
  • Bekar, F. (2022) İşin Anlamlılığı ve İşe Yabancılaşmanın Proaktif Davranış ile İlişkisi: İşte Kendini Geliştirmenin Aracılık Etkisi. (Yayınlanmamış Doktora Tezi). Gümüşhane Üniversitesi Lisansüstü Eğitim Enstitüsü. Gümüşhane.
  • Bozkurt, S. (2023). Process Makro ile Aracılık, Düzenleyicilik ve Durumsal Aracılık Etki Analizleri (SPSS Uygulamalı). Bursa: Ekin Yayınevi.
  • ChatGPT (2025). Said Sürücü Statistics File Reader. Retrieved from https://chatgpt.com/g/g-ZLKnksttu-statistics-file-reader-analyzer.
  • Creswell, J. W. (2013). Qualitative Inquiry and Research Design: Choosing Among Five Approaches. SAGE.
  • Cullen‐Lester, K. L., Leroy, H., Gerbasi, A., & Nishii, L. (2016). Energy's Role In the Extraversion (Dis)Advantage: How Energy Ties and Task Conflict Help Clarify the Relationship Between Extraversion and Proactive Performance. Journal of Organizational Behavior, 37(7), 1003-1022.
  • Ding, X. Q., Chen, H., Liu, J., Liu, Y. Z., & Wang, X. H. (2025). AI-Induced Behaviors: Bridging Proactivity and Deviance Through Motivational Insights. Journal of Managerial Psychology. 1-18. DOI 10.1108/JMP-05-2024-0375
  • Du, Y., Yang, C., Zhao, Y., & Xia, Y. (2024). How The Workplace Usage of AI in China Influences Proactive Behaviour? The Role of Pride and Shame. Asia Pacific Business Review, 1-22.
  • European Commission. (2024). European Artificial Intelligence Act. Retrieved from https://artific ialintelligenceact.eu/
  • Fiori, M., Bollmann, G., & Rossier, J. (2015). Exploring The Path Through Which Career Adaptability Increases Job Satisfaction and Lowers Job Stress: The Role of Affect. Journal of Vocational Behavior, 91, 113-121.
  • Fuller, C. M., Simmering, M. J., Atinc, G., Atinc, Y., & Babin, B. J. (2016). Common Methods Variance Detection in Business Research. Journal of Business Research, 69(8), 3192–3198.
  • Fuller, J. A., Stanton, J. M., Fisher, G. G., Spitzmüller, C., Russell, S. S., & Smith, P. C. (2003). A Lengthy Look at The Daily Grind: Time Series Analysis of Events, Mood, Stress, and Satisfaction. Journal of Applied Psychology, 88(6), 1019 – 1033.
  • Grant, A. M., & Ashford, S. J. (2008). The Dynamics of Proactivity at Work. Research in Organizational Behavior, 28, 3–34. https://doi.org/10.1016/j.riob.2008.04.002
  • Grassini, S. (2023). Development and Validation of the AI Attitude Scale (AIAS-4): a Brief Measure of General Attitude Toward Artificial Intelligence. Frontiers in Psychology, 14, 1-12,1191628.
  • Griffin, M. A., Neal, A., & Parker, S. K. (2007). A New Model of Work Role Performance: Positive Behavior in Uncertain and Interdependent Contexts. Academy of Management Journal, 50(2), 327–347.
  • Gürbüz, S. (2019). Sosyal Bilimlerde Aracı, Düzenleyici ve Durumsal Etki Analizleri. Ankara: Seçkin Yayıncılık.
  • Hair, J. F., et al. (2010). Multivariate Data Analysis (7th ed.). Pearson.
  • Headspace (2024). Workforce State of Mind Report. Retrieved from https://get.headspace.com /2024-workforce-state-of-mind
  • Hu, L. T., & Bentler, P. M. (1999). Cutoff Criteria for Fit Indexes in Covariance Structure Analysis: Conventional Criteria Versus New Alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55.
  • Hughes, C., Robert, L., Frady, K., & Arroyos, A. (2019). Artificial Intelligence, Employee Engagement, Fairness, and Job Outcomes. In C. Hughes, L. Robert, K. Frady, & A. Arroyos (Eds.), Managing Technology and Middle- and Low-Skilled Employees: Advances for Economic Regeneration (pp. 61–68). Emerald Publishing Limited. https://doi.org/10.1108/9 781789730777
  • Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., ... & Wang, Y. (2017). Artificial Intelligence in Healthcare: Past, Present and Future. Stroke and Vascular Neurology, 2(4), 230–243. https://doi.org/10.1136/svn-2017-000101
  • Kalaycı, Ş. (2010). SPSS Uygulamalı Çok Değişkenli İstatistik Teknikleri (5. Baskı). Ankara, Turkey: Asil Yayın Dağıtım.
  • Kline, R. B. (2023). Principles and Practice of Structural Equation Modeling. Guilford Publications.
  • Kotrlik, J. W. K. J. W., & Higgins, C. C. H. C. C. (2001). Organizational Research: Determining Appropriate Sample Size in Survey Research Appropriate Sample Size in Survey Research. Information Technology, Learning, And Performance Journal, 19(1), 43-50.
  • Lazarus, R. S., & Folkman, S. (1984). Stress, Appraisal, and Coping. Springer.
  • Li, Z., & Guo, X. (2021). The Effect of Job Stress on Employee Proactive Behaviour: The Role of Job Remodeling. Forest Chemicals Review, 168-182.
  • Liu, C., Wang, C., Wang, H., & Xu, D. (2021). How Does Daily Family-Supportive Supervisor Behavior Relieve Subordinates' Job Stress? The Effect of Ethical Leadership and Positive Emotions. Baltic Journal of Management, 16(3), 465-478.
  • Mays, W. (1952). Can Machines Think?. Philosophy, 27(101), 148-162.
  • Mijwel, M. M. (2015). History of Artificial Intelligence. Computer Science, (April 2015), 1-6. Retrieved from https://www.researchgate.net/profile/Maad-Mijwil/publication/ 322234922_History_of_Artificial_Intelligence/links/5a4d34e5a6fdcc3e99d15c1c/History-of-Artificial-Intelligence.pdf
  • Mitchell, L. (2011). Job Satisfaction and Affective Events Theory: What Have We Learned in the Last 15 Years? Business Renaissance Quarterly, 6(2), 43–53.
  • Nie, T., Zheng, Y., & Huang, Y. (2022). Peer Attachment and Proactive Socialization Behavior: The Moderating Role of Social Intelligence. Behavioral Sciences, 12(9), 312, 1-14.
  • Ohly, S., Sonnentag, S., & Pluntke, F. (2006). Routinization, Work Characteristics and Their Relationships With Creative and Proactive Behaviors. Journal of Organizational Behavior: The International Journal of Industrial, Occupational and Organizational Psychology and Behavior, 27(3), 257-279.
  • Okan, T., & Özbek, M. F. (2016). İş Yükü Talebi, İş Tatminsizliği ve İşten Ayrılma Niyeti Arasındaki İlişkilerde İş-Aile Çatışması ve İş Stresinin Ara Değişken Rolü: Sağlık Çalışanları Örneği. Gümüshane University Electronic Journal Of The Institute Of Social Science/Gümüshane Üniversitesi Sosyal Bilimler Enstitüsü Elektronik Dergisi, 7(17). 203 – 226.
  • Özbek, M. F. (2011). Örgüt İçerisindeki Güven ve İşe Yabancilaşma İlişkisinde Örgüte Uyum Sağlamanin Araci Rolü. Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 16(1), 231-248.
  • Parasuraman, S. (1977). A study of Role Stress in Relation to Job Satisfaction, Performance, and Involvement of Middle Managers. (Doctoral dissertation). University of Illinois.
  • Parker, S. K., & Grote, G. (2022). Automation, Algorithms, and Beyond: Why Work Design Matters More Than Ever in A Digital World. Applied Psychology, 71(4), 1171-1204.
  • Qin, M., Qiu, S., Li, S., & Jiang, Z. (2025). Research on The Impact of Employee AI Identity on Employee Proactive Behavior in AI Workplace. Industrial Management & Data Systems, 125(2), 738-767.
  • Rather, R. A., Raisinghani, M., Gligor, D., Parrey, S. H., Russo, I., & Bozkurt, S. (2023). Examining Tourist Citizenship Behaviors Through Affective, Cognitive, Behavioral Engagement and Reputation: Symmetrical and Asymmetrical Approaches. Journal of Retailing and Consumer Services, 75, 1-16. 103451.
  • Satici, S. A., Okur, S., Yilmaz, F. B., & Grassini, S. (2025). Psychometric Properties and Turkish Adaptation of The Artificial Intelligence Attitude Scale (AIAS-4): Evidence for Construct Validity. BMC Psychology, 13(1), 1-14.
  • Schepman, A., & Rodway, P. (2020). Initial Validation of The General Attitudes Towards Artificial Intelligence Scale. Computers İn Human Behavior Reports, 1, 1 -13, 100014.
  • Shanafelt, T. D., Boone, S., Tan, L., Dyrbye, L. N., Sotile, W., Satele, D., ... & Oreskovich, M. R. (2012). Burnout and Satisfaction With Work-Life Balance Among US Physicians Relative to The General US Population. Archives of Internal Medicine, 172(18), 1377–1385. https://doi. org/10.1001/archinternmed.2012.3199
  • Sosik, J. J. & Godshalk, V. M. (2000), Leadership Styles, Mentoring Functions Received, and Job Related Stress: A Conceptual Model and Preliminary Study, Journal of Organizational Behavior, 21(4), 365-390.
  • Statista (2024). Artificial Intelligence – Turkey, Retrieved from https://www.statista.com/outlook /tmo/artificial-intelligence/turkey
  • Sun, C., Zhao, X., Guo, B., & Chen, N. (2025). Will Employee–AI Collaboration Enhance Employees’ Proactive Behavior? A Study Based on the Conservation of Resources Theory. Behavioral Sciences, 15(5), 648, 1-16. https:// doi.org/10.3390/bs15050648
  • Thompson, B. (2004). Exploratory And Confirmatory Factor Analysis: Understanding Concepts and Applications. Washington, DC: British Library Cataloguing-in-Publication Data.
  • Türk Dil Kurumu (2025). Yapay Zeka, Retrieved from https://sozluk.gov.tr/
  • Warshawsky, N. E., Havens, D. S., & Knafl, G. (2012). The Influence of Interpersonal Relationships On Nurse Managers' Work Engagement and Proactive Work Behavior. The Journal of Nursing Administration, 42(9), 418-425.
  • Weiss, H. M., & Cropanzano, R. (1996). Affective Events Theory. Research in Organizational Behavior, 18(1), 1-74.
  • Wu, C. H., Parker, S. K., Wu, L. Z., & Lee, C. (2018). When and Why People Engage in Different Forms of Proactive Behavior: Interactive Effects of Self-Construals and Work Characteristics. Academy of Management Journal, 61(1), 293-323.
  • Zhang, G., & Inness, M. (2019). Transformational Leadership and Employee Voice: A Model of Proactive Motivation. Leadership & Organization Development Journal.777-790.
  • Zhang, Q., Liao, G., Ran, X., & Wang, F. (2025). The Impact of AI Usage on Innovation Behavior at Work: The Moderating Role of Openness and Job Complexity. Behavioral Sciences, 15(4), 491, 1-22. https://doi.org/10.3390/ bs15040491
  • Zhou, P., Luo, J. M., & Chen, H. (2025). The Impact of Hotel Job Stress on Psychological Contracts and Proactive Behavior: The Moderating Role of Cynicism. International Journal of Contemporary Hospitality Management. 1-11.
There are 53 citations in total.

Details

Primary Language English
Subjects Organisational Behaviour
Journal Section Articles
Authors

Fevziye Bekar 0000-0003-1692-4294

Early Pub Date October 24, 2025
Publication Date October 28, 2025
Submission Date June 9, 2025
Acceptance Date October 6, 2025
Published in Issue Year 2025 Issue: 49

Cite

APA Bekar, F. (2025). THE MODERATING ROLE OF GENERAL ATTITUDE TOWARD ARTIFICIAL INTELLIGENCE IN THE EFFECT OF JOB STRESS ON PROACTIVE BEHAVIOR. Uluslararası İktisadi Ve İdari İncelemeler Dergisi(49), 313-328. https://doi.org/10.18092/ulikidince.1716295

______________________________________________________

Address: Karadeniz Technical University Department of Economics Room Number 213  

61080 Trabzon / Turkey

e-mail : uiiidergisi@gmail.com