Loading [a11y]/accessibility-menu.js
Research Article
BibTex RIS Cite

AYÇİÇEĞİ BALI TEMELLİ GÜMÜŞ NANOPARTİKÜLLERİN YEŞİL SENTEZİ, KARAKTERİZASYONU VE BİYOLOJİK AKTİVİTELERİNİN BELİRLENMESİ

Year 2024, Volume: 24 Issue: 2, 311 - 324, 18.11.2024
https://doi.org/10.31467/uluaricilik.1529043

Abstract

Tıp, ilaç salınım sistemleri, eczacılık, tarım gibi geniş bir yelpazede uygulama alanı bulan nanoteknolojinin yapı taşları olan altın, gümüş, çinko gibi nanopartiküller yeşil sentez tekniği kullanılarak çevre dostu, ekonomik ve biyouyumlu olarak sentezlenebilmektedir. Gümüş nanopartiküllerin yeşil sentezinde içermiş oldukları biyoaktif bileşenler nedeniyle bitkiler veya bitki temelli ürünler yaygın olarak kullanılmaktadır. Bal içermiş olduğu fenolik bileşenler ve şekerler ile gümüş nanopartiküllerin sentezinde kullanılabilecek önemli doğal ürünlerden biridir. Yapılan bu çalışmada, biyoaktif bileşen yönünden kestane ve meşe balına göre daha zayıf olan ayçiçeği balının gümüş nanopartiküllerin sentezinde kullanım potansiyeli tespit edilmiştir. Sentezlenen ayçiçeği balı temelli gümüş nanopartiküller (SH-AgNPs) karakterize edilmiş ve daha sonra antioksidan aktiviteleri ile yara iyileşmede önemli rolü olan myeloperoksidaz ve kollegenaz enzimleri inhibe etme özellikleri tespit edilmiştir. Sentezlenen nanopartiküllerin 440 nm’ de maksimum absorbans verdiği, partikül boyutlarnın 33 nm ile 38 nm arasında değiştiği tespit edilmiştir. Sentezlenen nanopartiküllerin DPPH·radikal süpürme aktiviteleri ve FRAP demir indirgeme kapasiteleri sırasıyla % 81±1,42 and % 86±1,24; myleoperksidaz ile kollegenaz enzimlerini inhibe etme özellikleri sırasıyla % 63±1,45 and % 37±1,14 olarak tespit edildi. Elde edilen bulgular ayçiçeği balının nanoteknoloji alanında kullanım potansiyeli olduğunu göstermektedir.

Supporting Institution

Bu çalışma, TÜBİTAK Bilim İnsanı Destek Programları Başkanlığı (BİDEB) tarafından yürütülen 2209-A Üniversite Öğrencileri Araştırma Projeleri Destekleme Programı TÜBİTAK 2209-A tarafından 1919B012208098 proje numarası ile desteklenmiştir.

Project Number

1919B012208098 (TÜBİTAK 2209-A)

References

  • Al Sufyani NM, Hussien NA, Hawsawi YM. Characterization and anticancer potential of silver nanoparticles biosynthesized from Olea chrysophylla and Lavandula dentata leaf extracts on HCT116 colon cancer cells. Journal of Nanomaterials, 2019, 1-9. https://doi.org/10.1155/2019/7361695.
  • Al-Zaban MI, Mahmoud MA, AlHarbi MA. Catalytic degradation of methylene blue using silver nanoparticles synthesized by honey. Saudi Journal of Biological Sciences, 2021; 28(3): 2007-2013. https://doi.org/10.1016/j.sjbs.2021.01.003.
  • Awwad AM, Salem NM. Green synthesis of silver nanoparticles by Mulberry Leaves Extract. Nanoscience and Nanotechnology, 2012; 2(4): 125-128. https://doi.org/10.5923/j.nn.20120204.06.
  • Azwatul HM, Uda MNA, Gopinath SC, Arsat ZA, Abdullah F, Muttalib MFA, Adam T. Plant-based green synthesis of silver nanoparticle via chemical bonding analysis. Materials Today: Proceedings, 2023. https://doi.org/10.1016/j.matpr.2023.01.005.
  • Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Analytical Biochemistry, 1996; 239(1): 70-76. https://doi.org/10.1006/abio.1996.0292.
  • Can M, Keskin M. Green synthesis, characterization, and biochemical properties of waste walnut (Juglans regia L.) inner shell-based silver nanoparticles. Journal of the Serbian Chemical Society, 2024; 23-23. https://doi.org/10.2298/JSC231110023C.
  • Cuendet M, Hostettmann K, Potterat O. Iridoid glucosides with free radical scavenging properties from Fagraea blumei. Helvetica Chimica Acta, 1997; 80: 1144-1152. https://doi.org/10.1002/hlca.19970800411.
  • Czernel G, Bloch D, Matwijczuk A, Cieśla J, Kędzierska-Matysek M, Florek M, Gagoś M. Biodirected synthesis of silver nanoparticles using aqueous honey solutions and evaluation of their antifungal activity against pathogenic Candida spp. International journal of molecular sciences, 2021; 22(14): 7715. https://doi.org/10.3390/ijms22147715.
  • Díaz-GonzáLez M, Rocasalbas G, Francesko A, Touriño S, Torres JL, Tzanov T. Inhibition of deleterious chronic wound enzymes with plant polyphenols. Biocatalysis and Biotransformation, 2012; 30(1), 102-110. https://doi.org/10.3109/10242422.2012.646676.
  • Figueiredo CCM, da Costa Gomes A, Zibordi LC, Granero FO, Ximenes VF, Pavan NM, da Silva R MG. Biosynthesis of silver nanoparticles of Tribulus terrestris food supplement and evaluated antioxidant activity and collagenase, elastase and tyrosinase enzyme inhibition: In vitro and in silico approaches. Food and Bioproducts Processing, 2023; 138: 150-161. https://doi.org/10.1016/j.fbp.2023.01.010.
  • Francesko A, da Costa DS, Reis RL, Pashkuleva I, Tzanov T. Functional biopolymer-based matrices for modulation of chronic wound enzyme activities. Acta biomaterialia, 2013; 9(2), 5216-5225. https://doi.org/10.1016/j.actbio.2012.10.014
  • Garibo D, Borbón-Nuñez HA, de León JND, García Mendoza E, Estrada I, Toledano-Magaña Y, Susarrey-Arce A. Green synthesis of silver nanoparticles using Lysiloma acapulcensis exhibit high-antimicrobial activity. Scientific reports, 2020; 10(1): 12805. https://doi.org/10.1038/s41598-020-69606-7.
  • González Fá AJ, Juan A, Di Nezio MS. Synthesis and characterization of silver nanoparticles prepared with honey: the role of carbohydrates. Analytical Letters, 2017; 50(5): 877-888. https://doi.org/10.1080/00032719.2016.1199558.
  • Haiza H, Azizan A, Mohidin AH, Halin DSC. Green synthesis of silver nanoparticles using local honey. Nano Hybrids, 2013; 4: 87-98. https://doi.org/10.4028/www.scientific.net/NH.4.87.
  • Hanžić N, Jurkin T, Maksimović A, Gotić M. The synthesis of gold nanoparticles by a citrate-radiolytical method. Radiation Physics and Chemistry, 2015; 106: 77-82. https://doi.org/10.1016/j.radphyschem.2014.07.006.
  • He Y, Li X, Zheng Y, Wang Z, Ma Z, Yang Q, Zhang H. A green approach for synthesizing silver nanoparticles, and their antibacterial and cytotoxic activities. New Journal of Chemistry, 2018; 42(4): 2882-2888. https://doi.org/10.1039/C7NJ04224H.
  • Jeyaraj M, Sathishkumar G, Sivanandhan G, MubarakAli D, Rajesh M, Arun R, Ganapathi A. Biogenic silver nanoparticles for cancer treatment: An experimental report. Colloids and Surfaces B: Biointerfaces, 2013; 106: 86-92. https://doi.org/10.1016/j.colsurfb.2013.01.027.
  • Khalil NM, Pepato MT, Brunetti IL. Free radical scavenging profile and myeloperoxidase inhibition of extracts from antidiabetic plants: Bauhinia forficata and Cissus sicyoides, Biological research, 2008; 41(2): 165-171. https://doi.org/10.4067/S0716-97602008000200006.
  • Khan MR, Urmi MA, Kamaraj C, Malafaia G, Ragavendran C, Rahman MM. Green synthesis of silver nanoparticles with its bioactivity, toxicity and environmental applications: A comprehensive literature review. Environmental Nanotechnology, Monitoring & Management, 2023; 100872. https://doi.org/10.1016/j.enmm.2023.100872.
  • Keskin M. Synthesis, characterization and antidiabetic potential of bee pollen based silver nanoparticles. El-Cezeri, 2022; 9(1): 266-275. https://doi.org/10.31202/ecjse.963670.
  • Keskin M, Kaya G, Keskin Ş. Green synthesis and biochemical properties of propolis based silver nanoparticles. Uludağ Arıcılık Dergisi, 2022; 22(1), 59-67. https://doi.org/10.31467/uluaricilik.1080096.
  • Keskin M, Kaya G, Bayram S, Kurek-Górecka A, Olczyk P. Green synthesis, characterization, antioxidant, antibacterial and enzyme inhibition effects of chestnut (Castanea sativa) honey-mediated silver nanoparticles. Molecules, 2023; 28(6): 2762. https://doi.org/10.3390/molecules28062762.
  • Kumar V, Yadav SK. Plant-mediated synthesis of silver and gold nanoparticles and their applications. Journal of Chemical Technology and Biotechnology, 2009; 84(2): 151-157. https://doi.org/10.1002/jctb.2023.
  • Korkmaz N, Ceylan Y, İmamoğlu R, Kısa D, Şen F, Karadağ A. Eco-friendly biogenic silver nanoparticles: synthesis, characterization and biological applications. International Journal of Environmental Science and Technology, 2024; 1-10. https://doi.org/10.1007/s13762-024-05860-w.
  • Li WR, Xie XB, Shi QS, Duan SS, Ouyang YS, Chen YB. Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals, 2011; 24: 135-141. https://doi.org/10.1007/s10534-010-9381-6.
  • Mallikarjuna K, Narasimha G, Dillip GR, Praveen B, Shreedhar B, Lakshmi CS, Raju BDP. Green synthesis of silver nanoparticles using Ocimum leaf extract and their characterization. Digest Journal of Nanomaterials and Biostructures, 2011; 6(1): 181-186.
  • Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME, Kalinina NO. Green" nanotechnologies: Synthesis of metal nanoparticles using plants. Acta Naturae, 2014; 6(1): 35-44. https://doi.org/10.32607/20758251-2014-6-1-35-44.
  • Maleki H, Simchi A, Imani M, Costa BFO. Size-controlled synthesis of superparamagnetic iron oxide nanoparticles and their surface coating by gold for biomedical applications. Journal of Magnetism and Magnetic Materials, 2012; 324(23): 3997-4005. https://doi.org/10.1016/j.jmmm.2012.06.045.
  • Matar G, Akyuz G, Kaymazlar E, Andaç M. An investigation of green synthesis of silver nanoparticles using Turkish honey against pathogenic bacterial strains. Biointerface Research in Applied Chemistry, 2023; 13(2). https://doi.org/10.33263/BRIAC132.195.
  • Monteiro DR, Silva S, Negri M, Gorup LF, de Camargo ER, Oliveira R, Henriques M. Silver nanoparticles: Influence of stabilizing agent and diameter on antifungal activity against Candida albicans and Candida glabrata biofilms. Letters in Applied Microbiology, 2012; 54(5): 383-391. https://doi.org/10.1111/j.1472-765X.2012.03219.x.
  • Okafor F, Janen A, Kukhtareva T, Edwards V, Curley M. Green synthesis of silver nanoparticles, their characterization, application and antibacterial activity. International journal of environmental research and public health, 2013; 10(10): 5221-5238. https://doi.org/10.3390/ijerph10105221.
  • Okitsu K, Yue A, Tanabe S, Matsumoto H, Yobiko Y. Formation of colloidal gold nanoparticles in an ultrasonic field: Control of rate of gold(III) reduction and size of formed gold particles. Langmuir, 2001; 17: 7717-7720. https://doi.org/10.1021/la010414l.
  • Oskuee RK, Banikamali A, Bazzaz BSF, Hosseini HA, Darroudi M. Honey-based and ultrasonic-assisted synthesis of silver nanoparticles and their antibacterial activities. Journal of Nanoscience and Nanotechnology, 2016; 16(8): 7989-7993. https://doi.org/10.1166/jnn.2016.13031.
  • Parvekar P, Palaskar J, Metgud S, Maria R, Dutta S. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus. Biomaterial investigations in dentistry, 2020; 7(1): 105-109. https://doi.org/10.1080/26415275.2020.1796674.
  • Rojkind M, Dominguez-Rosales J A, Nieto N, Greenwel P. Role of hydrogen peroxide and oxidative stress in healing responses. Cellular and Molecular Life Sciences CMLS, 2002; 59, 1872-1891. https://doi.org/10.1007/PL00012511.
  • Sadeghi B, Gholamhoseinpoor F. A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2015; 134: 310-315. https://doi.org/10.1016/j.saa.2014.06.046.
  • Sharma V.K, Yngard RA, Lin Y. Silver nanoparticles: Green synthesis and their antimicrobial activities. Advances in Colloid and Interface Science, 2009; 145: 83-96. https://doi.org/10.1016/j.cis.2008.09.002.
  • Trengove NJ, Stacey MC, Macauley S, Bennett N, Gibson J, Burslem F, Schultz G. Analysis of the acute and chronic wound environments: the role of proteases and their inhibitors. Wound Repair and Regeneration, 1999; 7(6), 442-452. https://doi.org/10.1046/j.1524-475X.1999.00442.x.
  • Tu PTB, Tawata S. Anti-oxidant, anti-aging, and anti-melanogenic properties of the essential oils from two varieties of Alpinia zerumbet. Molecules, 2015; 20(9): 16723-16740. https://doi.org/10.3390/molecules200916723.
  • Wady AF, Machado AL, Foggi CC, Zamperini CA, Zucolotto V, Moffa EB, Vergani CE. Effect of a Silver Nanoparticles Solution on Staphylococcus aureus and Candida spp. Journal of Nanomaterials, 2014; 2014(1): 545279. https://doi.org/10.1155/2014/545279.
  • Wong KKY, Liu X. Silver nanoparticles - The real "silver bullet" in clinical medicine? Med Chem Comm, 2010; 1(2): 125. https://doi.org/10.1039/c0md00069h.
  • Youssef GA, El-Boraey AM, Abdel-Tawab MM. Eco-friendly green synthesis of silver nanoparticles from Egyptian honey: Evaluating its antibacterial activities. Egyptian Journal of Botany, 2019; 59(3): 709-721. https://doi.org/10.21608/ejbo.2019.6597.1261.
  • Yokoyama K, Welchons DR. The conjugation of amyloid beta protein on the gold colloidal nanoparticles' surfaces. Nanotechnology, 2007; 18(10): 105101. https://doi.org/10.1088/0957-4484/18/10/105101.
  • Zhang XF, Liu ZG, Shen W, Gurunathan S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. International Journal of Molecular Sciences, 2016; 17(9): 1534. https://doi.org/10.3390/ijms17091534.

Green Synthesis, Characterization and Determination of Biological Activity of Sunflower Honey Based-Silver Nanoparticles

Year 2024, Volume: 24 Issue: 2, 311 - 324, 18.11.2024
https://doi.org/10.31467/uluaricilik.1529043

Abstract

Nanoparticles such as gold, silver, zinc, which are the building blocks of nanotechnology, which have a wide range of applications in medicine, drug release systems, pharmacy, agriculture, can be synthesized in an environmentally friendly, economical and biocompatible way using green synthesis technique. In the green synthesis of silver nanoparticles, plants or plant-based products are widely used due to the bioactive components they contain. Honey is one of the important natural products that can be used in the synthesis of silver nanoparticles with its phenolic components and sugars. In this study, the potential of sunflower honey, which is weaker than chestnut and oak honey in terms of bioactive components, for the synthesis of silver nanoparticles was determined. The synthesized sunflower honey-based silver nanoparticles (SH-AgNPs) were characterized and then their antioxidant activity and inhibition of myeloperoxidase and collagenase enzymes, which play an important role in wound healing, were determined. It was determined that the synthesized nanoparticles gave maximum absorbance at 440 nm and particle sizes ranged between 33 nm and 38 nm. The DPPH· radical scavenging activities and ferric reducing capacity (FRAP) of the synthesized nanoparticles were determined as 81±1.42% and 86±1.24%, respectively, and the inhibition properties of myleoperoxidase and collagenase enzymes were determined as 63±1.45% and 37±1.14%, respectively. The findings obtained show that sunflower honey has the potential for use in the field of nanotechnology.

Project Number

1919B012208098 (TÜBİTAK 2209-A)

References

  • Al Sufyani NM, Hussien NA, Hawsawi YM. Characterization and anticancer potential of silver nanoparticles biosynthesized from Olea chrysophylla and Lavandula dentata leaf extracts on HCT116 colon cancer cells. Journal of Nanomaterials, 2019, 1-9. https://doi.org/10.1155/2019/7361695.
  • Al-Zaban MI, Mahmoud MA, AlHarbi MA. Catalytic degradation of methylene blue using silver nanoparticles synthesized by honey. Saudi Journal of Biological Sciences, 2021; 28(3): 2007-2013. https://doi.org/10.1016/j.sjbs.2021.01.003.
  • Awwad AM, Salem NM. Green synthesis of silver nanoparticles by Mulberry Leaves Extract. Nanoscience and Nanotechnology, 2012; 2(4): 125-128. https://doi.org/10.5923/j.nn.20120204.06.
  • Azwatul HM, Uda MNA, Gopinath SC, Arsat ZA, Abdullah F, Muttalib MFA, Adam T. Plant-based green synthesis of silver nanoparticle via chemical bonding analysis. Materials Today: Proceedings, 2023. https://doi.org/10.1016/j.matpr.2023.01.005.
  • Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Analytical Biochemistry, 1996; 239(1): 70-76. https://doi.org/10.1006/abio.1996.0292.
  • Can M, Keskin M. Green synthesis, characterization, and biochemical properties of waste walnut (Juglans regia L.) inner shell-based silver nanoparticles. Journal of the Serbian Chemical Society, 2024; 23-23. https://doi.org/10.2298/JSC231110023C.
  • Cuendet M, Hostettmann K, Potterat O. Iridoid glucosides with free radical scavenging properties from Fagraea blumei. Helvetica Chimica Acta, 1997; 80: 1144-1152. https://doi.org/10.1002/hlca.19970800411.
  • Czernel G, Bloch D, Matwijczuk A, Cieśla J, Kędzierska-Matysek M, Florek M, Gagoś M. Biodirected synthesis of silver nanoparticles using aqueous honey solutions and evaluation of their antifungal activity against pathogenic Candida spp. International journal of molecular sciences, 2021; 22(14): 7715. https://doi.org/10.3390/ijms22147715.
  • Díaz-GonzáLez M, Rocasalbas G, Francesko A, Touriño S, Torres JL, Tzanov T. Inhibition of deleterious chronic wound enzymes with plant polyphenols. Biocatalysis and Biotransformation, 2012; 30(1), 102-110. https://doi.org/10.3109/10242422.2012.646676.
  • Figueiredo CCM, da Costa Gomes A, Zibordi LC, Granero FO, Ximenes VF, Pavan NM, da Silva R MG. Biosynthesis of silver nanoparticles of Tribulus terrestris food supplement and evaluated antioxidant activity and collagenase, elastase and tyrosinase enzyme inhibition: In vitro and in silico approaches. Food and Bioproducts Processing, 2023; 138: 150-161. https://doi.org/10.1016/j.fbp.2023.01.010.
  • Francesko A, da Costa DS, Reis RL, Pashkuleva I, Tzanov T. Functional biopolymer-based matrices for modulation of chronic wound enzyme activities. Acta biomaterialia, 2013; 9(2), 5216-5225. https://doi.org/10.1016/j.actbio.2012.10.014
  • Garibo D, Borbón-Nuñez HA, de León JND, García Mendoza E, Estrada I, Toledano-Magaña Y, Susarrey-Arce A. Green synthesis of silver nanoparticles using Lysiloma acapulcensis exhibit high-antimicrobial activity. Scientific reports, 2020; 10(1): 12805. https://doi.org/10.1038/s41598-020-69606-7.
  • González Fá AJ, Juan A, Di Nezio MS. Synthesis and characterization of silver nanoparticles prepared with honey: the role of carbohydrates. Analytical Letters, 2017; 50(5): 877-888. https://doi.org/10.1080/00032719.2016.1199558.
  • Haiza H, Azizan A, Mohidin AH, Halin DSC. Green synthesis of silver nanoparticles using local honey. Nano Hybrids, 2013; 4: 87-98. https://doi.org/10.4028/www.scientific.net/NH.4.87.
  • Hanžić N, Jurkin T, Maksimović A, Gotić M. The synthesis of gold nanoparticles by a citrate-radiolytical method. Radiation Physics and Chemistry, 2015; 106: 77-82. https://doi.org/10.1016/j.radphyschem.2014.07.006.
  • He Y, Li X, Zheng Y, Wang Z, Ma Z, Yang Q, Zhang H. A green approach for synthesizing silver nanoparticles, and their antibacterial and cytotoxic activities. New Journal of Chemistry, 2018; 42(4): 2882-2888. https://doi.org/10.1039/C7NJ04224H.
  • Jeyaraj M, Sathishkumar G, Sivanandhan G, MubarakAli D, Rajesh M, Arun R, Ganapathi A. Biogenic silver nanoparticles for cancer treatment: An experimental report. Colloids and Surfaces B: Biointerfaces, 2013; 106: 86-92. https://doi.org/10.1016/j.colsurfb.2013.01.027.
  • Khalil NM, Pepato MT, Brunetti IL. Free radical scavenging profile and myeloperoxidase inhibition of extracts from antidiabetic plants: Bauhinia forficata and Cissus sicyoides, Biological research, 2008; 41(2): 165-171. https://doi.org/10.4067/S0716-97602008000200006.
  • Khan MR, Urmi MA, Kamaraj C, Malafaia G, Ragavendran C, Rahman MM. Green synthesis of silver nanoparticles with its bioactivity, toxicity and environmental applications: A comprehensive literature review. Environmental Nanotechnology, Monitoring & Management, 2023; 100872. https://doi.org/10.1016/j.enmm.2023.100872.
  • Keskin M. Synthesis, characterization and antidiabetic potential of bee pollen based silver nanoparticles. El-Cezeri, 2022; 9(1): 266-275. https://doi.org/10.31202/ecjse.963670.
  • Keskin M, Kaya G, Keskin Ş. Green synthesis and biochemical properties of propolis based silver nanoparticles. Uludağ Arıcılık Dergisi, 2022; 22(1), 59-67. https://doi.org/10.31467/uluaricilik.1080096.
  • Keskin M, Kaya G, Bayram S, Kurek-Górecka A, Olczyk P. Green synthesis, characterization, antioxidant, antibacterial and enzyme inhibition effects of chestnut (Castanea sativa) honey-mediated silver nanoparticles. Molecules, 2023; 28(6): 2762. https://doi.org/10.3390/molecules28062762.
  • Kumar V, Yadav SK. Plant-mediated synthesis of silver and gold nanoparticles and their applications. Journal of Chemical Technology and Biotechnology, 2009; 84(2): 151-157. https://doi.org/10.1002/jctb.2023.
  • Korkmaz N, Ceylan Y, İmamoğlu R, Kısa D, Şen F, Karadağ A. Eco-friendly biogenic silver nanoparticles: synthesis, characterization and biological applications. International Journal of Environmental Science and Technology, 2024; 1-10. https://doi.org/10.1007/s13762-024-05860-w.
  • Li WR, Xie XB, Shi QS, Duan SS, Ouyang YS, Chen YB. Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals, 2011; 24: 135-141. https://doi.org/10.1007/s10534-010-9381-6.
  • Mallikarjuna K, Narasimha G, Dillip GR, Praveen B, Shreedhar B, Lakshmi CS, Raju BDP. Green synthesis of silver nanoparticles using Ocimum leaf extract and their characterization. Digest Journal of Nanomaterials and Biostructures, 2011; 6(1): 181-186.
  • Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME, Kalinina NO. Green" nanotechnologies: Synthesis of metal nanoparticles using plants. Acta Naturae, 2014; 6(1): 35-44. https://doi.org/10.32607/20758251-2014-6-1-35-44.
  • Maleki H, Simchi A, Imani M, Costa BFO. Size-controlled synthesis of superparamagnetic iron oxide nanoparticles and their surface coating by gold for biomedical applications. Journal of Magnetism and Magnetic Materials, 2012; 324(23): 3997-4005. https://doi.org/10.1016/j.jmmm.2012.06.045.
  • Matar G, Akyuz G, Kaymazlar E, Andaç M. An investigation of green synthesis of silver nanoparticles using Turkish honey against pathogenic bacterial strains. Biointerface Research in Applied Chemistry, 2023; 13(2). https://doi.org/10.33263/BRIAC132.195.
  • Monteiro DR, Silva S, Negri M, Gorup LF, de Camargo ER, Oliveira R, Henriques M. Silver nanoparticles: Influence of stabilizing agent and diameter on antifungal activity against Candida albicans and Candida glabrata biofilms. Letters in Applied Microbiology, 2012; 54(5): 383-391. https://doi.org/10.1111/j.1472-765X.2012.03219.x.
  • Okafor F, Janen A, Kukhtareva T, Edwards V, Curley M. Green synthesis of silver nanoparticles, their characterization, application and antibacterial activity. International journal of environmental research and public health, 2013; 10(10): 5221-5238. https://doi.org/10.3390/ijerph10105221.
  • Okitsu K, Yue A, Tanabe S, Matsumoto H, Yobiko Y. Formation of colloidal gold nanoparticles in an ultrasonic field: Control of rate of gold(III) reduction and size of formed gold particles. Langmuir, 2001; 17: 7717-7720. https://doi.org/10.1021/la010414l.
  • Oskuee RK, Banikamali A, Bazzaz BSF, Hosseini HA, Darroudi M. Honey-based and ultrasonic-assisted synthesis of silver nanoparticles and their antibacterial activities. Journal of Nanoscience and Nanotechnology, 2016; 16(8): 7989-7993. https://doi.org/10.1166/jnn.2016.13031.
  • Parvekar P, Palaskar J, Metgud S, Maria R, Dutta S. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus. Biomaterial investigations in dentistry, 2020; 7(1): 105-109. https://doi.org/10.1080/26415275.2020.1796674.
  • Rojkind M, Dominguez-Rosales J A, Nieto N, Greenwel P. Role of hydrogen peroxide and oxidative stress in healing responses. Cellular and Molecular Life Sciences CMLS, 2002; 59, 1872-1891. https://doi.org/10.1007/PL00012511.
  • Sadeghi B, Gholamhoseinpoor F. A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2015; 134: 310-315. https://doi.org/10.1016/j.saa.2014.06.046.
  • Sharma V.K, Yngard RA, Lin Y. Silver nanoparticles: Green synthesis and their antimicrobial activities. Advances in Colloid and Interface Science, 2009; 145: 83-96. https://doi.org/10.1016/j.cis.2008.09.002.
  • Trengove NJ, Stacey MC, Macauley S, Bennett N, Gibson J, Burslem F, Schultz G. Analysis of the acute and chronic wound environments: the role of proteases and their inhibitors. Wound Repair and Regeneration, 1999; 7(6), 442-452. https://doi.org/10.1046/j.1524-475X.1999.00442.x.
  • Tu PTB, Tawata S. Anti-oxidant, anti-aging, and anti-melanogenic properties of the essential oils from two varieties of Alpinia zerumbet. Molecules, 2015; 20(9): 16723-16740. https://doi.org/10.3390/molecules200916723.
  • Wady AF, Machado AL, Foggi CC, Zamperini CA, Zucolotto V, Moffa EB, Vergani CE. Effect of a Silver Nanoparticles Solution on Staphylococcus aureus and Candida spp. Journal of Nanomaterials, 2014; 2014(1): 545279. https://doi.org/10.1155/2014/545279.
  • Wong KKY, Liu X. Silver nanoparticles - The real "silver bullet" in clinical medicine? Med Chem Comm, 2010; 1(2): 125. https://doi.org/10.1039/c0md00069h.
  • Youssef GA, El-Boraey AM, Abdel-Tawab MM. Eco-friendly green synthesis of silver nanoparticles from Egyptian honey: Evaluating its antibacterial activities. Egyptian Journal of Botany, 2019; 59(3): 709-721. https://doi.org/10.21608/ejbo.2019.6597.1261.
  • Yokoyama K, Welchons DR. The conjugation of amyloid beta protein on the gold colloidal nanoparticles' surfaces. Nanotechnology, 2007; 18(10): 105101. https://doi.org/10.1088/0957-4484/18/10/105101.
  • Zhang XF, Liu ZG, Shen W, Gurunathan S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. International Journal of Molecular Sciences, 2016; 17(9): 1534. https://doi.org/10.3390/ijms17091534.
There are 44 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering (Other), Traditional, Complementary and Integrative Medicine (Other)
Journal Section Research Articles
Authors

Merve Keskin 0000-0001-9365-334X

İrem Uysal This is me 0009-0003-2755-3983

Gözde Gürcan This is me 0009-0001-2804-1758

Project Number 1919B012208098 (TÜBİTAK 2209-A)
Early Pub Date November 12, 2024
Publication Date November 18, 2024
Submission Date August 6, 2024
Acceptance Date October 10, 2024
Published in Issue Year 2024 Volume: 24 Issue: 2

Cite

Vancouver Keskin M, Uysal İ, Gürcan G. AYÇİÇEĞİ BALI TEMELLİ GÜMÜŞ NANOPARTİKÜLLERİN YEŞİL SENTEZİ, KARAKTERİZASYONU VE BİYOLOJİK AKTİVİTELERİNİN BELİRLENMESİ. U. Arı. D.-U. Bee J. 2024;24(2):311-24.

Important Note: Since the author-referee information is kept confidential on both sides in our journal, both the author and the referees must upload the document to the system after removing their personal information in the review document section.

Note: Authors can also use homepage of our Journal.

https://creativecommons.org/licenses/by-nc-nd/4.0/

download
 

This work is licensed under Attribution-NonCommercial-NoDerivatives 4.0 International.