Bu çalışmada bağlayıcı olarak polyester, agrega olarak ponza ve katkı malzemesi olarak uçucu kül kullanılarak polyester bağlayıcılı polimer kompozitler üretilmiştir. Bağlayıcı malzeme olarak çimento yerine polyester kullanılması ile polyester esaslı çimentosuz kompozitler üretilmiştir. 40×40×160 mm ebatlarında prizmatik numuneler üretilerek kompozitlerin basınç ve eğilme dayanımları test edilmiştir. EN 196-1'e göre maksimum basınç ve eğilme dayanımları sırasıyla 45,69 MPa ve 8,49 MPa elde edilmiştir. Kontrol numuneye göre basınç ve eğilme dayanımları sırasıyla %32,2 ve %27,9 oranında artmıştır.
Xu, F., Zhou, M., Chen, J., & Ruan, S. (2014). Mechanical performance evaluation of polyester fiber and SBR latex compound-modified cement concrete road overlay material. Construction and Building Materials, 63, 142–149. doi:10.1016/j.conbuildmat.2014.04.054
Şimşek, B., & Uygunoğlu, T. (2018). Thermal, electrical, mechanical and fluidity properties of polyester-reinforced concrete composites. Sādhanā, 43(4), 57. doi:10.1007/s12046-018-0847-5
Heidari-Rarani, M., Aliha, M.R.M., Shokrieh, M.M., & Ayatollahi, M.R. (2014). Mechanical durability of an optimized polymer concrete under various thermal cyclic loadings—An experimental study. Construction and Building Materials, 64, 308–315. doi:10.1016/j.conbuildmat.2014.04.031
Zhao, L., Guo, X., Ge, C., Li, Q., Guo, L., Shu, X. & Liu, J. (2016). Investigation of the effectiveness of PC@GO on the reinforcement for cement composites. Construction and Building Materials, 113, 470–478. doi:10.1016/j.conbuildmat.2016.03.090
Seleem, H.E.H. (2006). The effect of inorganic fillers on the mechanical and thermal properties of polyester, Polymer- Plastics Technology and Engineering, 45(5), 585–590. doi:10.1080/03602550600553754
Uysal, H., Demirboğa, R., Şahin, R., & Gül, R. (2004). The effects of different cement dosages, slumps, and pumice aggregate ratios on the thermal conductivity and density of concrete. Cement and concrete research, 34(5), 845-848. doi:10.1016/j.cemconres.2003.09.018
Yasar, E., Atis, C. D., Kilic, A., & Gulsen, H. (2003). Strength properties of lightweight concrete made with basaltic pumice and fly ash. Materials Letters, 57(15), 2267-2270. doi:10.1016/S0167-577X(03)00146-0
Hossain, K.M.A. (2003). Blended cement using volcanic ash and pumice. Cement and Concrete Research, 33(10), 1601-1605. doi:10.1016/S0008-8846(03)00127-3
Hossain, K.M.A. (2004). Properties of volcanic pumice-based cement and lightweight concrete. Cement and concrete research, 34(2), 283-291. doi:10.1016/j.cemconres.2003.08.004
Hossain, K.M.A., Ahmed, S., & Lachemi, M. (2011). Lightweight concrete incorporating pumice based blended cement and aggregate: Mechanical and durability characteristics. Construction and Building Materials, 25(3), 1186-1195. doi:10.1016/j.conbuildmat.2010.09.036
Crangle, R.D. (2011). Pumice and pumicite. US geological survey minerals year book – mineral commodity summaries, 124–25.
Grasser, K., & Minke, G. (1990). Building with pumice. Deutsche Gesellschaft fur Technische Zusammenarbeit (GTZ) GmbH. Germany: Eschburn.
Yeginobali, A., Sobolev., K.G., Soboleva, S.V., & Tokyay, M. (1998). High strength natural lightweight aggregate concrete with silica fume. ACI SP-178-38, 178, 739–758.
Litvan, G.G. (1985). Further study of particulate admixtures for enhanced freeze–thaw resistance of concrete. ACI J 82 (5):724–730.
Hossain, K.M.A., & Lachemi, M. (2006). Performance of volcanic ash and pumice based blended cement concrete in mixed sulfate environment. Cement and Concrete Research, 36(6), 1123-1133. doi:10.1016/j.cemconres.2006.03.010
Khandaker, M., & Hossain, K.M.A. (2005). Volcanic ash and pumice as cement additives: pozzolanic, alkali-silica reaction and autoclave expansion characteristics. Cement and Concrete Research, 35(6), 1141-1144. doi.org/10.1016/j.cemconres.2004.09.025
Khandaker, M., & Hossain, K.M.A. (2005). Chloride induced corrosion of reinforcement in volcanic ash and pumice based blended concrete. Cement and Concrete Composites, 27(3), 381-390. doi:10.1016/j.cemconcomp.2004.02.047
Neville, A.M. (1981). Properties of Concrete. Longman Scientific and Technical, New York.
Aruntaş, H.Y. (2006). Uçucu Küllerin İnşaat Sektöründe Kullanım Potansiyeli. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 21(1), 2006.
Sevim, Ö., & Demir, İ. (2019). Physical and permeability properties of cementitious mortars having fly ash with optimized particle size distribution. Cement and Concrete Composites, 2019, doi:10.1016/j.cemconcomp.2018.11.017. (in Press).
Sevim, Ö., & Demir, İ. (2019). Optimization of fly ash particle size distribution for cementitious systems with high compactness. Construction and Building Materials, 195, 104-114. doi:10.1016/j.conbuildmat.2018.11.080
Demir, İ., Güzelkücük, S., & Sevim, Ö. (2018). Effects of sulfate on cement mortar with hybrid pozzolan substitution. Engineering Science and Technology, an International Journal, 21(3), 275-283. doi:10.1016/j.jestch.2018.04.009
Zhao, J., Wang, D., Wang, X., Liao, S., & Lin, H. (2015). Ultrafine grinding of fly ash with grinding aids: Impact on particle characteristics of ultrafine fly ash and properties of blended cement containing ultrafine fly ash. Construction and Building Materials, 78, 250-259. doi:10.1016/j.conbuildmat.2015.01.025
Bagheri, A., Zanganeh, H., Alizadeh, H., Shakerinia, M., & Marian, M.A.S. (2013). Comparing the performance of fine fly ash and silica fume in enhancing the properties of concretes containing fly ash. Construction and building materials, 47, 1402-1408. doi:10.1016/j.conbuildmat.2013.06.037
Shaikh, F.U., & Supit, S.W. (2015). Compressive strength and durability properties of high volume fly ash (HVFA) concretes containing ultrafine fly ash (UFFA). Construction and building materials, 82, 192-205. doi:10.1016/j.conbuildmat.2015.02.068
Haddad, M.U., Fowler, D.W., & Paul, D.R. (1983). Factors affecting the curing and strength of polymer concrete, ACI Journal September-October, 396–402. Wang, B., Qian, T., Zhang, Q., Zhan, X., & Chen, F. (2016). Heat resistance and surface properties of polyester resin modified with fluorosilicone. Surface and Coating Technology, 304, 31–39. doi:10.1016/j.surfcoat.2016.06.075
Lin, J.H., Hsieh, J.C., Lin, J.Y., Lin, M.C., & Lou, C.W. (2014). Polyester/low melting point polyester nonwoven fabrics used as soilless culture mediums: effects of the content of low melting point polyester fibers. Applied Mechanics and Materials, 457, 49–52. doi:10.4028/www.scientific.net/AMM.457-458.49
Carosio, F., Di Blasio, A., Cuttica, F., Alongi, J. & Malucelli, G. (2014). Flame retardancy of polyester and polyester–cotton blends treated with caseins. Industrial & Engineering Chemistry Research, 53(10): 3917–3923. doi:10.1021/ie404089t
Zhao, M.L., Li, F.X., Yu, J.Y., & Wang, X.L. (2014). Preparation and characterization of poly (ethylene terephthalate) copolyesters modified with sodium-5-sulfo-bis-(hydroxyethyl)-isophthalate and poly (ethylene glycol). Journal of Applied Polymer Science, 131(3). doi:10.1002/app.39823
TS 802, (2016). Design of Concrete Mixes. Turkish Standard Institution, Ankara.
TS EN 12390-3, (2003). Beton-Sertleşmiş Beton Deneyleri-Bölüm 3: Deney Numunelerinde Basınç Dayanımının Tayini. Turkish Standard Institution, Ankara.
Mechanical Properties of Polyester Based Composites
In this study, polyester-based polymer composites were produced by using polyester as binder, pumice as aggregate and fly ash as additive material. Polyester-based composites were produced by using polyester instead of cement as binder material. The compressive and flexural strengths of the composites were tested by using prismatic samples of 40×40×160 mm. The maximum compressive and flexural strengths for EN 196-1 were 45.69 MPa and 8.49 MPa, respectively. Compressive and flexural strengths increased by 32.2% and 27.9%, respectively, compared to the control sample.
Xu, F., Zhou, M., Chen, J., & Ruan, S. (2014). Mechanical performance evaluation of polyester fiber and SBR latex compound-modified cement concrete road overlay material. Construction and Building Materials, 63, 142–149. doi:10.1016/j.conbuildmat.2014.04.054
Şimşek, B., & Uygunoğlu, T. (2018). Thermal, electrical, mechanical and fluidity properties of polyester-reinforced concrete composites. Sādhanā, 43(4), 57. doi:10.1007/s12046-018-0847-5
Heidari-Rarani, M., Aliha, M.R.M., Shokrieh, M.M., & Ayatollahi, M.R. (2014). Mechanical durability of an optimized polymer concrete under various thermal cyclic loadings—An experimental study. Construction and Building Materials, 64, 308–315. doi:10.1016/j.conbuildmat.2014.04.031
Zhao, L., Guo, X., Ge, C., Li, Q., Guo, L., Shu, X. & Liu, J. (2016). Investigation of the effectiveness of PC@GO on the reinforcement for cement composites. Construction and Building Materials, 113, 470–478. doi:10.1016/j.conbuildmat.2016.03.090
Seleem, H.E.H. (2006). The effect of inorganic fillers on the mechanical and thermal properties of polyester, Polymer- Plastics Technology and Engineering, 45(5), 585–590. doi:10.1080/03602550600553754
Uysal, H., Demirboğa, R., Şahin, R., & Gül, R. (2004). The effects of different cement dosages, slumps, and pumice aggregate ratios on the thermal conductivity and density of concrete. Cement and concrete research, 34(5), 845-848. doi:10.1016/j.cemconres.2003.09.018
Yasar, E., Atis, C. D., Kilic, A., & Gulsen, H. (2003). Strength properties of lightweight concrete made with basaltic pumice and fly ash. Materials Letters, 57(15), 2267-2270. doi:10.1016/S0167-577X(03)00146-0
Hossain, K.M.A. (2003). Blended cement using volcanic ash and pumice. Cement and Concrete Research, 33(10), 1601-1605. doi:10.1016/S0008-8846(03)00127-3
Hossain, K.M.A. (2004). Properties of volcanic pumice-based cement and lightweight concrete. Cement and concrete research, 34(2), 283-291. doi:10.1016/j.cemconres.2003.08.004
Hossain, K.M.A., Ahmed, S., & Lachemi, M. (2011). Lightweight concrete incorporating pumice based blended cement and aggregate: Mechanical and durability characteristics. Construction and Building Materials, 25(3), 1186-1195. doi:10.1016/j.conbuildmat.2010.09.036
Crangle, R.D. (2011). Pumice and pumicite. US geological survey minerals year book – mineral commodity summaries, 124–25.
Grasser, K., & Minke, G. (1990). Building with pumice. Deutsche Gesellschaft fur Technische Zusammenarbeit (GTZ) GmbH. Germany: Eschburn.
Yeginobali, A., Sobolev., K.G., Soboleva, S.V., & Tokyay, M. (1998). High strength natural lightweight aggregate concrete with silica fume. ACI SP-178-38, 178, 739–758.
Litvan, G.G. (1985). Further study of particulate admixtures for enhanced freeze–thaw resistance of concrete. ACI J 82 (5):724–730.
Hossain, K.M.A., & Lachemi, M. (2006). Performance of volcanic ash and pumice based blended cement concrete in mixed sulfate environment. Cement and Concrete Research, 36(6), 1123-1133. doi:10.1016/j.cemconres.2006.03.010
Khandaker, M., & Hossain, K.M.A. (2005). Volcanic ash and pumice as cement additives: pozzolanic, alkali-silica reaction and autoclave expansion characteristics. Cement and Concrete Research, 35(6), 1141-1144. doi.org/10.1016/j.cemconres.2004.09.025
Khandaker, M., & Hossain, K.M.A. (2005). Chloride induced corrosion of reinforcement in volcanic ash and pumice based blended concrete. Cement and Concrete Composites, 27(3), 381-390. doi:10.1016/j.cemconcomp.2004.02.047
Neville, A.M. (1981). Properties of Concrete. Longman Scientific and Technical, New York.
Aruntaş, H.Y. (2006). Uçucu Küllerin İnşaat Sektöründe Kullanım Potansiyeli. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 21(1), 2006.
Sevim, Ö., & Demir, İ. (2019). Physical and permeability properties of cementitious mortars having fly ash with optimized particle size distribution. Cement and Concrete Composites, 2019, doi:10.1016/j.cemconcomp.2018.11.017. (in Press).
Sevim, Ö., & Demir, İ. (2019). Optimization of fly ash particle size distribution for cementitious systems with high compactness. Construction and Building Materials, 195, 104-114. doi:10.1016/j.conbuildmat.2018.11.080
Demir, İ., Güzelkücük, S., & Sevim, Ö. (2018). Effects of sulfate on cement mortar with hybrid pozzolan substitution. Engineering Science and Technology, an International Journal, 21(3), 275-283. doi:10.1016/j.jestch.2018.04.009
Zhao, J., Wang, D., Wang, X., Liao, S., & Lin, H. (2015). Ultrafine grinding of fly ash with grinding aids: Impact on particle characteristics of ultrafine fly ash and properties of blended cement containing ultrafine fly ash. Construction and Building Materials, 78, 250-259. doi:10.1016/j.conbuildmat.2015.01.025
Bagheri, A., Zanganeh, H., Alizadeh, H., Shakerinia, M., & Marian, M.A.S. (2013). Comparing the performance of fine fly ash and silica fume in enhancing the properties of concretes containing fly ash. Construction and building materials, 47, 1402-1408. doi:10.1016/j.conbuildmat.2013.06.037
Shaikh, F.U., & Supit, S.W. (2015). Compressive strength and durability properties of high volume fly ash (HVFA) concretes containing ultrafine fly ash (UFFA). Construction and building materials, 82, 192-205. doi:10.1016/j.conbuildmat.2015.02.068
Haddad, M.U., Fowler, D.W., & Paul, D.R. (1983). Factors affecting the curing and strength of polymer concrete, ACI Journal September-October, 396–402. Wang, B., Qian, T., Zhang, Q., Zhan, X., & Chen, F. (2016). Heat resistance and surface properties of polyester resin modified with fluorosilicone. Surface and Coating Technology, 304, 31–39. doi:10.1016/j.surfcoat.2016.06.075
Lin, J.H., Hsieh, J.C., Lin, J.Y., Lin, M.C., & Lou, C.W. (2014). Polyester/low melting point polyester nonwoven fabrics used as soilless culture mediums: effects of the content of low melting point polyester fibers. Applied Mechanics and Materials, 457, 49–52. doi:10.4028/www.scientific.net/AMM.457-458.49
Carosio, F., Di Blasio, A., Cuttica, F., Alongi, J. & Malucelli, G. (2014). Flame retardancy of polyester and polyester–cotton blends treated with caseins. Industrial & Engineering Chemistry Research, 53(10): 3917–3923. doi:10.1021/ie404089t
Zhao, M.L., Li, F.X., Yu, J.Y., & Wang, X.L. (2014). Preparation and characterization of poly (ethylene terephthalate) copolyesters modified with sodium-5-sulfo-bis-(hydroxyethyl)-isophthalate and poly (ethylene glycol). Journal of Applied Polymer Science, 131(3). doi:10.1002/app.39823
TS 802, (2016). Design of Concrete Mixes. Turkish Standard Institution, Ankara.
TS EN 12390-3, (2003). Beton-Sertleşmiş Beton Deneyleri-Bölüm 3: Deney Numunelerinde Basınç Dayanımının Tayini. Turkish Standard Institution, Ankara.
Sevim, Ö. (2019). Polyester Bağlayıcılı Kompozitlerin Mekanik Özellikleri. International Journal of Engineering Research and Development, 11(2), 507-514. https://doi.org/10.29137/umagd.495051