Centrifugal fans are used in most of the manufacturing processes for ventilating and/or air conditioning the manufacturing areas. Because of relatively limited documentation on design of these fans, new designs are developed by experimental method. This method does not only take a lot of time but also increases the costs considerably. Nowadays, most of the companies create 3D models and then conduct analyses by the CFD (computational fluid dynamics) programs and perform some optimizations before manufacturing their new designs. In this study, the main principles of centrifugal fans and their characteristics were treated. Further, a fan was developed and a prototype of it was manufactured. Then the steps of its numerical and experimental performance tests and the comparison of these results were accomplished.
1. Jeon, W.H., Lee, D.J., “A numerical study on the flow
and sound fields of centrifugal impeller located near a
wedge”, Journal of Sound and Vibration 266 (2003) 785-
804.
2. Lin, S., C., Huang, C.L., “An integrated experimental
and numerical study of forward-curved centrifugal fan”,
Experimental Thermal and Fluid Science 26 (2002) 421-
434.
3. Eck, B., “Ventilatoren: Entwurf und Betrieb der Radial-,
Axial- und Querstromventilatoren”, 4. Ed., Berlin, Springer,
1962.
4. Arun, N., Akkoc, H., “Fundamentals of Pneumatics” ,
TMMOB Publication Nr: 205, 1997.
5. Bohl, W. “Ventilatoren” , Vogel-Buchverlag, 1983.
6. Ugural, M., Parmaksızoglu, C., “Ventilators and Their
Systems”, Termas Publication, 1992. (In Turkish)
7. AMCA (Air Movement and Control Association)
International, Inc. “AMCA 210-99 Laboratory Methods of
Testing Fans for Aerodynamic Performance Rating”, 1999
8. Fujii, K.L, Tamura, Y., “Capability of Current
Supercomputers for the Computational Fluid Dynamics”,
Proceedings of the 1989 ACM IEEE Conference on Super
Computing. PX7180, 1989, USA.
9. Engin, T., „Study of tip clearanceeffects in centrifugal
fans with unshrouded impellers using computational fluid
dynamics”, Proc. IMechE Part A: J. Power and Energy, 220
(2006) 599-610.
10. Zhou, W., Zhao, Z., Lee, T. S., Winoto, S. H.
Investigation of flow through centrifugal pump impeller
using computational fluid dynamics. Int. J. Rotat. Mach.,
2003, 9(1), 49–61.
11. Asuaje, M., Bakir, F., Kouidri, S., Rey, R.
Inversedesign method for centrifugal impellers and
comparison with numerical simulation tools. Int. J. Comput.
Fluid Dyn., 2004, 18(2), 101–110.
12. Asuaje, M., Bakir, F., Kouhidri, S., Noguera, R., Rey,
R. Computer-aided design and optimization of centrifugal
pumps. Proc. IMechE, Part A: J. Power and Energy, 2005,
219, 187–193.
13. Yu, S. C. M., Ng, B. T. H., Chan, W. K., Chua, L. P.
The flow patterns within the impeller passages of a
centrifugal blood pump model. Med. Eng. Phys., 2000, 22,
381–293.
14. Yu, Z., Li, S., He, W., Wang, W., Huang, D., Zhu, Z.
Numerical simulation of flowfield for a whole centrifugal
fan
and analysis of effects of blade inlet angle and impeller gap.
HVAC&R Res., 2005, 11(2), 263–283.
15. EN ISO 5801:2008, Part 1: Ventilatoren-
Leistungsmessungen, Normkennlinien, 2008.
16. Bleir, F.P., “Fan Handbook”, Mc Graw-Hill, 1978.
17. FLUENT, “Tutorial Guide”, 2002
1. Jeon, W.H., Lee, D.J., “A numerical study on the flow
and sound fields of centrifugal impeller located near a
wedge”, Journal of Sound and Vibration 266 (2003) 785-
804.
2. Lin, S., C., Huang, C.L., “An integrated experimental
and numerical study of forward-curved centrifugal fan”,
Experimental Thermal and Fluid Science 26 (2002) 421-
434.
3. Eck, B., “Ventilatoren: Entwurf und Betrieb der Radial-,
Axial- und Querstromventilatoren”, 4. Ed., Berlin, Springer,
1962.
4. Arun, N., Akkoc, H., “Fundamentals of Pneumatics” ,
TMMOB Publication Nr: 205, 1997.
5. Bohl, W. “Ventilatoren” , Vogel-Buchverlag, 1983.
6. Ugural, M., Parmaksızoglu, C., “Ventilators and Their
Systems”, Termas Publication, 1992. (In Turkish)
7. AMCA (Air Movement and Control Association)
International, Inc. “AMCA 210-99 Laboratory Methods of
Testing Fans for Aerodynamic Performance Rating”, 1999
8. Fujii, K.L, Tamura, Y., “Capability of Current
Supercomputers for the Computational Fluid Dynamics”,
Proceedings of the 1989 ACM IEEE Conference on Super
Computing. PX7180, 1989, USA.
9. Engin, T., „Study of tip clearanceeffects in centrifugal
fans with unshrouded impellers using computational fluid
dynamics”, Proc. IMechE Part A: J. Power and Energy, 220
(2006) 599-610.
10. Zhou, W., Zhao, Z., Lee, T. S., Winoto, S. H.
Investigation of flow through centrifugal pump impeller
using computational fluid dynamics. Int. J. Rotat. Mach.,
2003, 9(1), 49–61.
11. Asuaje, M., Bakir, F., Kouidri, S., Rey, R.
Inversedesign method for centrifugal impellers and
comparison with numerical simulation tools. Int. J. Comput.
Fluid Dyn., 2004, 18(2), 101–110.
12. Asuaje, M., Bakir, F., Kouhidri, S., Noguera, R., Rey,
R. Computer-aided design and optimization of centrifugal
pumps. Proc. IMechE, Part A: J. Power and Energy, 2005,
219, 187–193.
13. Yu, S. C. M., Ng, B. T. H., Chan, W. K., Chua, L. P.
The flow patterns within the impeller passages of a
centrifugal blood pump model. Med. Eng. Phys., 2000, 22,
381–293.
14. Yu, Z., Li, S., He, W., Wang, W., Huang, D., Zhu, Z.
Numerical simulation of flowfield for a whole centrifugal
fan
and analysis of effects of blade inlet angle and impeller gap.
HVAC&R Res., 2005, 11(2), 263–283.
15. EN ISO 5801:2008, Part 1: Ventilatoren-
Leistungsmessungen, Normkennlinien, 2008.
16. Bleir, F.P., “Fan Handbook”, Mc Graw-Hill, 1978.
17. FLUENT, “Tutorial Guide”, 2002
Gürsel, O., & Erkek, M. (2012). Developing an industrial centrifugal fan as prototype using an experiment series and finite volume method. International Journal of Engineering Research and Development, 4(2), 1-14.