Energy Consumption Analysis of Sintering Temperature Optimization of Pure Aluminum Powder Metal Compacts Sintered by Using The UHFIS
Year 2017,
Volume: 9 Issue: 3, 174 - 185, 26.12.2017
Mehmet Taştan
,
Hayrettin Gökozan
,
Pınar Sarı Çavdar
Gürkan Soy
,
Uğur Çavdar
Abstract
In
this study, pure aluminum (Al) powder metal (PM) compacts are sintered
conventional or induction systems. PM compacts are sintered by furnace at 600 °C
in 60 minutes in the conventional sintering process. In the other process, PM
compacts are sintered by induction system at seven different sintering
temperatures from 550°C to 610°C
in 4 minutes. 2.8 kW, 900 kHz ultra-high frequency induction system (UHFIS)
used for heating application of induction sintering process. Densities and
hardness values are investigated for both processes. During these sintering
processes, all energy consumption results are measured and calculated, than
compared with each other. The effects of the sintering time increase in the
induction sintering process on energy cost have been analyzed. Optimum
sintering temperature of the induction sintering process is determined. It has
been seen that the cheaper energy cost is obtained by the induction system for
sintering application.
References
- [1] Amirjan, M., Khorsand, H., Siadati, M. H., and Farsani, R. E., “Artificial Neural Network prediction of Cu–Al2O3 composite properties prepared by powder metallurgy method”, Journal of Materials Research and Technology, 2(4), 351-355, 2013.
[2] Sedlak, J., Rican, D., Piska, M., and Rozkosny, L., “Study of Materials Produced by Powder Metallurgy Using Classical and Modern Additive Laser Technology”, Procedia Engineering, 100, 1232-1241, 2015.
[3] Angelo, P. C., and Subramanian, R., Powder metallurgy: science, technology and applications. PHI Learning Pvt. Ltd., 2008.
[4] Pozzoli, V. A., Ruiz, M. S., Kingston, D., and Razzitte, A. C., “Entropy Production during the Process of Sintering”, Procedia Materials Science, 8, 1073-1078, 2015.
- [5] Caliman, L. B., Bichaud, E., Soudant, P., Gouvea, D., and Steil, M. C., “A simple flash sintering setup under applied mechanical stress and controlled atmosphere”, MethodsX, 2, 392-398, 2015.
[6] Kang, S. J. L. Sintering: densification, grain growth and microstructure. Butterworth-Heinemann, 2004.
[7] Çavdar, U., and Atik, E., “Investigation of conventional-and induction-sintered iron and iron-based powder metal compacts”, JOM, 66(6), 1027-1034, 2014.
[8] Xun, W., Jie, Z., and Qiang, L., “Multi-objective optimization of medium frequency induction heating process for large diameter pipe bending”, Procedia Engineering, 81, 2255-2260, 2014.
[9] Gökozan, H., Taştan, M., Taşkin, S., Çavdar, P., and Çavdar, U., “Comparative Energy Consumption Analyses Of an Ultra High Frequency Induction Heating System For Induction Heating, Welding and Sintering Applications” Materials testing, 58, 1009-1013, 2016.
[10] Cavdar, P. S., and Cavdar, U., “The evaluation of different environments in ultra-high frequency induction sintered powder metal compacts”, Revista de Metalurgia, 51(1), e036, 2015.
[11] Çavdar, U., “Mechanical properties of hot forged ANSI 1050 steel”, Materials Testing, 56(3), 208-212, 2014.
[12] Tastan, M., Gokozan, H., Taskin, S., and Çavdar, U., “Comparative energy consumption analyses of an ultra high frequency induction heating system for material processing applications”, Revista de Metalurgia, 51(3), 2015.
[13] Çavdar, U., and Gulsahin, I., “Ultra high frequency induction welding of powder metal compacts”, Revista de Metalurgia, 50(2), 2014.
[14] Çavdar, U., and Kusoglu, İ. M., “Effects of coil design on induction welding of sintered iron based compacts”, Materials Testing, 56(11-12), 973-979, 2014.
[15] Baghani, M., Aliofkhazraei, M., and Poursalehi, R., “Microwave-assisted Sintering of Fe-Al2O3 Nanocomposites: Study of Corrosion and Wear Properties”, Procedia Materials Science, 11, 689-694, 2015.
[16] Reddy, M. P., Ubaid, F., Shakoor, R. A., Mohamed, A. M. A., and Madhuri, W., “Structural and mechanical properties of microwave sintered Al Ni 50 Ti 50 composites”, Journal of Science: Advanced Materials and Devices, 1(3), 362-366, 2016.
[17] Mackie, A. J., Hatton, G. D., Hamilton, H. G., Dean, J. S., and Goodall, R., “Carbon uptake and distribution in spark plasma sintering (SPS) processed Sm (Co, Fe, Cu, Zr)”, Materials Letters, 171, 14-17, 2016.
[18] Dutel, G. D., Langlois, P., Tingaud, D., Vrel, D., and Dirras, G., “Data on the influence of cold isostatic pre-compaction on mechanical properties of polycrystalline nickel sintered using Spark Plasma Sintering”, Data in Brief, 11, 61-67, 2017.
[19] Wudy, K., Lanzl, L., and Drummer, D., “Selective Laser Sintering of Filled Polymer Systems: Bulk Properties and Laser Beam Material Interaction”, Physics Procedia, 83, 991-1002, 2016.
[20] Yasa, E., Poyraz, O., Solakoglu, E. U., Akbulut, G., and Oren, S., “A Study on the Stair Stepping Effect in Direct Metal Laser Sintering of a Nickel-based Superalloy”, Procedia CIRP, 45, 175-178, 2016.
[21] Sharma, P., and Majumdar, J. D., “Studies on nano-crystalline CoNiCrAlY consolidated by conventional and microwave sintering”, Advanced Powder Technology, 27(1), 72-84, 2016.
[22] Lemke, F., Rheinheimer, W., and Hoffmann, M. J., “A comparison of power controlled flash sintering and conventional sintering of strontium titanate”, Scripta Materialia, 130, 187-190, 2017.
[23] Bisht, A., Srivastava, M., Kumar, R. M., Lahiri, I., and Lahiri, D., “Strengthening mechanism in graphene nanoplatelets reinforced aluminum composite fabricated through spark plasma sintering”, Materials Science and Engineering: A, 695, 20-28, 2017.
[24] Guo, B., Ni, S., Yi, J., Shen, R., Tang, Z., Du, Y., and Song, M., “Microstructures and mechanical properties of carbon nanotubes reinforced pure aluminum composites synthesized by spark plasma sintering and hot Rolling”, Materials Science and Engineering: A, 698, 282-288, 2017.
[25] Ghasali, E., Pakseresht, A. H., Alizadeh, M., Shirvanimoghaddam, K., and Ebadzadeh, T., “Vanadium carbide reinforced aluminum matrix composite prepared by conventional, microwave and spark plasma sintering”, Journal of Alloys and Compounds, 688, 527-533, 2016.
[26] Cooke, R. W., Kraus, N. P., and Bishop, D. P., “Spark plasma sintering of aluminum powders prealloyed with scandium additions”, Materials Science and Engineering: A, 657, 71-81, 2016.
[27] Durowoju, M. O., Sadiku, E. R., Diouf, S., Shongwe, M. B., and Olubambi, P. A., “Spark plasma sintering of graphite–aluminum powder reinforced with SiC/Si particles”, Powder Technology, 284, 504-513, 2015.
[28] Firestein, K. L., Corthay, S., Steinman, A. E., Matveev, A. T., Kovalskii, A. M., Sukhorukova, I. V., ... and Shtansky, D. V., “High-strength aluminum-based composites reinforced with BN, AlB 2 and AlN particles fabricated via reactive spark plasma sintering of Al-BN powder mixtures”, Materials Science and Engineering: A, 681, 1-9, 2017.
[29] Sweet, G. A., Brochu, M., Hexemer, R. L., Donaldson, I. W., and Bishop, D. P., “Microstructure and mechanical properties of air atomized aluminum powder consolidated via spark plasma sintering”, Materials Science and Engineering: A, 608, 273-282, 2014.
[30] Taskin, S., and Gokozan, H., “Determination of the spectral properties and harmonic levels for driving an induction motor by an inverter driver under the different load conditions”, Elektronika ir Elektrotechnika, 108(2), 75-80, 2011.
[31] Özdemir, A., and Taştan, M., “PLL based digital adaptive filter for detecting interharmonics”, Mathematical Problems in Engineering, 1-10, 2014.
Year 2017,
Volume: 9 Issue: 3, 174 - 185, 26.12.2017
Mehmet Taştan
,
Hayrettin Gökozan
,
Pınar Sarı Çavdar
Gürkan Soy
,
Uğur Çavdar
References
- [1] Amirjan, M., Khorsand, H., Siadati, M. H., and Farsani, R. E., “Artificial Neural Network prediction of Cu–Al2O3 composite properties prepared by powder metallurgy method”, Journal of Materials Research and Technology, 2(4), 351-355, 2013.
[2] Sedlak, J., Rican, D., Piska, M., and Rozkosny, L., “Study of Materials Produced by Powder Metallurgy Using Classical and Modern Additive Laser Technology”, Procedia Engineering, 100, 1232-1241, 2015.
[3] Angelo, P. C., and Subramanian, R., Powder metallurgy: science, technology and applications. PHI Learning Pvt. Ltd., 2008.
[4] Pozzoli, V. A., Ruiz, M. S., Kingston, D., and Razzitte, A. C., “Entropy Production during the Process of Sintering”, Procedia Materials Science, 8, 1073-1078, 2015.
- [5] Caliman, L. B., Bichaud, E., Soudant, P., Gouvea, D., and Steil, M. C., “A simple flash sintering setup under applied mechanical stress and controlled atmosphere”, MethodsX, 2, 392-398, 2015.
[6] Kang, S. J. L. Sintering: densification, grain growth and microstructure. Butterworth-Heinemann, 2004.
[7] Çavdar, U., and Atik, E., “Investigation of conventional-and induction-sintered iron and iron-based powder metal compacts”, JOM, 66(6), 1027-1034, 2014.
[8] Xun, W., Jie, Z., and Qiang, L., “Multi-objective optimization of medium frequency induction heating process for large diameter pipe bending”, Procedia Engineering, 81, 2255-2260, 2014.
[9] Gökozan, H., Taştan, M., Taşkin, S., Çavdar, P., and Çavdar, U., “Comparative Energy Consumption Analyses Of an Ultra High Frequency Induction Heating System For Induction Heating, Welding and Sintering Applications” Materials testing, 58, 1009-1013, 2016.
[10] Cavdar, P. S., and Cavdar, U., “The evaluation of different environments in ultra-high frequency induction sintered powder metal compacts”, Revista de Metalurgia, 51(1), e036, 2015.
[11] Çavdar, U., “Mechanical properties of hot forged ANSI 1050 steel”, Materials Testing, 56(3), 208-212, 2014.
[12] Tastan, M., Gokozan, H., Taskin, S., and Çavdar, U., “Comparative energy consumption analyses of an ultra high frequency induction heating system for material processing applications”, Revista de Metalurgia, 51(3), 2015.
[13] Çavdar, U., and Gulsahin, I., “Ultra high frequency induction welding of powder metal compacts”, Revista de Metalurgia, 50(2), 2014.
[14] Çavdar, U., and Kusoglu, İ. M., “Effects of coil design on induction welding of sintered iron based compacts”, Materials Testing, 56(11-12), 973-979, 2014.
[15] Baghani, M., Aliofkhazraei, M., and Poursalehi, R., “Microwave-assisted Sintering of Fe-Al2O3 Nanocomposites: Study of Corrosion and Wear Properties”, Procedia Materials Science, 11, 689-694, 2015.
[16] Reddy, M. P., Ubaid, F., Shakoor, R. A., Mohamed, A. M. A., and Madhuri, W., “Structural and mechanical properties of microwave sintered Al Ni 50 Ti 50 composites”, Journal of Science: Advanced Materials and Devices, 1(3), 362-366, 2016.
[17] Mackie, A. J., Hatton, G. D., Hamilton, H. G., Dean, J. S., and Goodall, R., “Carbon uptake and distribution in spark plasma sintering (SPS) processed Sm (Co, Fe, Cu, Zr)”, Materials Letters, 171, 14-17, 2016.
[18] Dutel, G. D., Langlois, P., Tingaud, D., Vrel, D., and Dirras, G., “Data on the influence of cold isostatic pre-compaction on mechanical properties of polycrystalline nickel sintered using Spark Plasma Sintering”, Data in Brief, 11, 61-67, 2017.
[19] Wudy, K., Lanzl, L., and Drummer, D., “Selective Laser Sintering of Filled Polymer Systems: Bulk Properties and Laser Beam Material Interaction”, Physics Procedia, 83, 991-1002, 2016.
[20] Yasa, E., Poyraz, O., Solakoglu, E. U., Akbulut, G., and Oren, S., “A Study on the Stair Stepping Effect in Direct Metal Laser Sintering of a Nickel-based Superalloy”, Procedia CIRP, 45, 175-178, 2016.
[21] Sharma, P., and Majumdar, J. D., “Studies on nano-crystalline CoNiCrAlY consolidated by conventional and microwave sintering”, Advanced Powder Technology, 27(1), 72-84, 2016.
[22] Lemke, F., Rheinheimer, W., and Hoffmann, M. J., “A comparison of power controlled flash sintering and conventional sintering of strontium titanate”, Scripta Materialia, 130, 187-190, 2017.
[23] Bisht, A., Srivastava, M., Kumar, R. M., Lahiri, I., and Lahiri, D., “Strengthening mechanism in graphene nanoplatelets reinforced aluminum composite fabricated through spark plasma sintering”, Materials Science and Engineering: A, 695, 20-28, 2017.
[24] Guo, B., Ni, S., Yi, J., Shen, R., Tang, Z., Du, Y., and Song, M., “Microstructures and mechanical properties of carbon nanotubes reinforced pure aluminum composites synthesized by spark plasma sintering and hot Rolling”, Materials Science and Engineering: A, 698, 282-288, 2017.
[25] Ghasali, E., Pakseresht, A. H., Alizadeh, M., Shirvanimoghaddam, K., and Ebadzadeh, T., “Vanadium carbide reinforced aluminum matrix composite prepared by conventional, microwave and spark plasma sintering”, Journal of Alloys and Compounds, 688, 527-533, 2016.
[26] Cooke, R. W., Kraus, N. P., and Bishop, D. P., “Spark plasma sintering of aluminum powders prealloyed with scandium additions”, Materials Science and Engineering: A, 657, 71-81, 2016.
[27] Durowoju, M. O., Sadiku, E. R., Diouf, S., Shongwe, M. B., and Olubambi, P. A., “Spark plasma sintering of graphite–aluminum powder reinforced with SiC/Si particles”, Powder Technology, 284, 504-513, 2015.
[28] Firestein, K. L., Corthay, S., Steinman, A. E., Matveev, A. T., Kovalskii, A. M., Sukhorukova, I. V., ... and Shtansky, D. V., “High-strength aluminum-based composites reinforced with BN, AlB 2 and AlN particles fabricated via reactive spark plasma sintering of Al-BN powder mixtures”, Materials Science and Engineering: A, 681, 1-9, 2017.
[29] Sweet, G. A., Brochu, M., Hexemer, R. L., Donaldson, I. W., and Bishop, D. P., “Microstructure and mechanical properties of air atomized aluminum powder consolidated via spark plasma sintering”, Materials Science and Engineering: A, 608, 273-282, 2014.
[30] Taskin, S., and Gokozan, H., “Determination of the spectral properties and harmonic levels for driving an induction motor by an inverter driver under the different load conditions”, Elektronika ir Elektrotechnika, 108(2), 75-80, 2011.
[31] Özdemir, A., and Taştan, M., “PLL based digital adaptive filter for detecting interharmonics”, Mathematical Problems in Engineering, 1-10, 2014.