Research Article
BibTex RIS Cite

Mixed Noise Removal with External Parameter in Image Denoising

Year 2018, Volume: 10 Issue: 2, 135 - 142, 29.06.2018
https://doi.org/10.29137/umagd.376895

Abstract

In this study,
a new method has been developed on noise removal, one of the most important parts
in image processing. In particular, a new noise removal filter has been
developed to removes noise from images the mix of µ and σ values. In this
method, a new approach is proposed to remove noise when μ value increases while
σ value is constant. The filter has particularly proven to be more successful
on all of µ values. PSNR have been used to compare the results of the study.
The newly developed method has been compared with the median, wiener2, Bayesian
shrink, bilateral, median+bilateral, BM3D, KSVD methods. For example, when
µ-0.10 and σ-0.01 added to Lena image, other algorithms’ PSNR results are
19.23-19.35, 18.90, 18.73, 19.60, 19.81, 19.70 while they are 27.06 in our new
method.

References

  • Aharon M., Elad M. and Bruckstein A., (2006). “K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation”, IEEE Transactions On Signal Processing, 54(11): 4321-4332.
  • Bouboulis P., Slavakis K. and Theodoridis S., (2010). “Adaptive Kernel-Based Image Denoising Employing Semi-Parametric Regularization”, IEEE Transactions on Image Processing, 19(6): 1465-1479.
  • Chang S. G., Yu B. and Vetterli M., (2000). “Adaptive Wavelet Thresholding for Image Denoising and Compression”, IEEE Transactions On Image Processing, 9(9): 1532-1546.
  • Chen B., Liu Q., Sun X., Li X. and Shu H., (2014). “Removing gaussian noise for colour images by quaternion representation and optimisation of weights in non-local means filter”, IET Image Processing, 8: 591-600.
  • Chong B. and Zhu Y.K., (2013). “Speckle reduction in optical coherence tomography images of human finger skin by wavelet modified BM3D filter”, Optics Communications, 291: 461-469.
  • Dabov K., Foi A., Katkovnik V. and Egiazarian K., (2007). “Image denoising by sparse 3D transform-domain collaborative filtering”, IEEE Transactions on Image processing, 16(8): 2080-2095.
  • Erkan U. and Kilicman A., (2016). “Two new methods for removing salt-and-pepper noise from digital images”, ScienceAsia 42: 28-32.
  • Garnett R., Huegerich T., Chui C. and He W., (2005). “A universal noise removal algorithm with an impulse detector”, IEEE Transactions on Image Processing, 14(11): 1747-1754.
  • Golestani H. B., Joneidi M. and Sadeghii M., (2014). “A Study on Clustering for Clustering Based Image De-Noising”, Journal of Information Systems and Telecommunication, 2(4): 196-204.
  • Huang Y. M., Michael. K. Ng. and Wen Y.W., (2009). “Fast Image Restoration Methods for Impulse and Gaussian Noises Removal”, IEEE Signal Processing Letters, 16(6): 457-460.
  • Jaiswal A., Upadhyay J. and Somkuwar A., (2014). “Image denoising and quality measurements by using filtering and wavelet based techniques”, (AEU) International Journal of Electronics and Communications 68: 699-705.
  • Khana A., Waqas M., Ali M. R., Altalhi A., Alshomrani S. and Shimd S., (2016). “Image denoising using noise ratio estimation, K-means clustering and non-local means-based estimator”, Computers and Electrical Engineering, 54: 370–381.
  • Khmag A., Ramli A. R., Hashim S. J. and Al-Haddad S. A. R., (2016). “Additive Noise Reduction in Natural Images Using Second-Generation Wavelet Transform Hidden Markov Models”, IEEJ Transactions on Electrical and Electronic Engineering, 11: 339-347.
  • Kumar B. K. S., (2013). “Image denoising based on gaussian/bilateral filter and its method noise thresholding”, Signal, Image and Video Processing, 7(6): 1159-1172.
  • Liu C., Szeliski R., Kang S. B., Zitnick C. L. and Freeman W. T., (2008). “Automatic Estimation and Removal of Noise from a Single Image”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(2): 299-314.
  • Liu J., Tai X. C., Huang H. and Huan Z., (2013). “A Weighted Dictionary Learning Model for Denoising Images Corrupted by Mixed Noise”, IEEE Transactions on Image Processing, 22(3): 1108-1120.
  • Liu W. and Lin W., (2013). “Additive White Gaussian Noise Level Estimation in SVD Domain for Images”, IEEE Transactions on Image Processing, 22(3): 872-883.
  • Lopez-Rubio E., (2010). “Restoration of images corrupted by Gaussian and uniform impulsive noise”, Pattern Recognition, 43: 1835–1846.
  • Luisier F., Vonesch C., Blu T. and Unser M., (2010). “Fast interscale wavelet denoising of Poisson-corrupted images”, Signal Processing 90: 415–427.
  • Montagner Y. L., Angelini E. D. and Marin J. C. O., (2014). “An unbiased risk estimator for image denoising in the presence of mixed poisson–gaussian noise”, IEEE Transactions on Image Processing, 23(3): 1255-1268.
  • Rafsanjani H. K., Sedaaghi M. H. and Saryazdi S., (2017). “An adaptive diffusion coefficient selection for image denoising”, Digital Signal Processing, 64: 71-82.
  • Sakthidasan K., Sankaran A. and Velmurugan Nagappan N., (2016). “Noise free image restoration using hybrid filter with adaptive genetic algorithm”, Computers and Electrical Engineering, 54: 382-392.
  • Tomasi C. and Manduchi R., (1998). “Bilateral filtering for gray and color images”, IEEE Sixth Int. Conf. Computer Vision, Bombay, India, 839-846.
  • Vijaykumar V. R., Vanathi P.T. and Kanagasabapathy P., (2010). “Fast and Efficient Algorithm to Remove Gaussian Noise in Digital Images”, (IAENG) International Journal of Computer Science 37(1): 78-84.
  • Xiao Y., Zeng T., Yu J. and Michael K. Ng., (2011). “Restoration of images corrupted by mixed Gaussian-impulse noise via I1–I0 minimization”, Pattern Recognition 44: 1708-1720.
  • Zhang C. and Wang K., (2015). “A switching median–mean filter for removal of high-density impulse noise from digital images”, Optik, 126: 956-961.
Year 2018, Volume: 10 Issue: 2, 135 - 142, 29.06.2018
https://doi.org/10.29137/umagd.376895

Abstract

References

  • Aharon M., Elad M. and Bruckstein A., (2006). “K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation”, IEEE Transactions On Signal Processing, 54(11): 4321-4332.
  • Bouboulis P., Slavakis K. and Theodoridis S., (2010). “Adaptive Kernel-Based Image Denoising Employing Semi-Parametric Regularization”, IEEE Transactions on Image Processing, 19(6): 1465-1479.
  • Chang S. G., Yu B. and Vetterli M., (2000). “Adaptive Wavelet Thresholding for Image Denoising and Compression”, IEEE Transactions On Image Processing, 9(9): 1532-1546.
  • Chen B., Liu Q., Sun X., Li X. and Shu H., (2014). “Removing gaussian noise for colour images by quaternion representation and optimisation of weights in non-local means filter”, IET Image Processing, 8: 591-600.
  • Chong B. and Zhu Y.K., (2013). “Speckle reduction in optical coherence tomography images of human finger skin by wavelet modified BM3D filter”, Optics Communications, 291: 461-469.
  • Dabov K., Foi A., Katkovnik V. and Egiazarian K., (2007). “Image denoising by sparse 3D transform-domain collaborative filtering”, IEEE Transactions on Image processing, 16(8): 2080-2095.
  • Erkan U. and Kilicman A., (2016). “Two new methods for removing salt-and-pepper noise from digital images”, ScienceAsia 42: 28-32.
  • Garnett R., Huegerich T., Chui C. and He W., (2005). “A universal noise removal algorithm with an impulse detector”, IEEE Transactions on Image Processing, 14(11): 1747-1754.
  • Golestani H. B., Joneidi M. and Sadeghii M., (2014). “A Study on Clustering for Clustering Based Image De-Noising”, Journal of Information Systems and Telecommunication, 2(4): 196-204.
  • Huang Y. M., Michael. K. Ng. and Wen Y.W., (2009). “Fast Image Restoration Methods for Impulse and Gaussian Noises Removal”, IEEE Signal Processing Letters, 16(6): 457-460.
  • Jaiswal A., Upadhyay J. and Somkuwar A., (2014). “Image denoising and quality measurements by using filtering and wavelet based techniques”, (AEU) International Journal of Electronics and Communications 68: 699-705.
  • Khana A., Waqas M., Ali M. R., Altalhi A., Alshomrani S. and Shimd S., (2016). “Image denoising using noise ratio estimation, K-means clustering and non-local means-based estimator”, Computers and Electrical Engineering, 54: 370–381.
  • Khmag A., Ramli A. R., Hashim S. J. and Al-Haddad S. A. R., (2016). “Additive Noise Reduction in Natural Images Using Second-Generation Wavelet Transform Hidden Markov Models”, IEEJ Transactions on Electrical and Electronic Engineering, 11: 339-347.
  • Kumar B. K. S., (2013). “Image denoising based on gaussian/bilateral filter and its method noise thresholding”, Signal, Image and Video Processing, 7(6): 1159-1172.
  • Liu C., Szeliski R., Kang S. B., Zitnick C. L. and Freeman W. T., (2008). “Automatic Estimation and Removal of Noise from a Single Image”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(2): 299-314.
  • Liu J., Tai X. C., Huang H. and Huan Z., (2013). “A Weighted Dictionary Learning Model for Denoising Images Corrupted by Mixed Noise”, IEEE Transactions on Image Processing, 22(3): 1108-1120.
  • Liu W. and Lin W., (2013). “Additive White Gaussian Noise Level Estimation in SVD Domain for Images”, IEEE Transactions on Image Processing, 22(3): 872-883.
  • Lopez-Rubio E., (2010). “Restoration of images corrupted by Gaussian and uniform impulsive noise”, Pattern Recognition, 43: 1835–1846.
  • Luisier F., Vonesch C., Blu T. and Unser M., (2010). “Fast interscale wavelet denoising of Poisson-corrupted images”, Signal Processing 90: 415–427.
  • Montagner Y. L., Angelini E. D. and Marin J. C. O., (2014). “An unbiased risk estimator for image denoising in the presence of mixed poisson–gaussian noise”, IEEE Transactions on Image Processing, 23(3): 1255-1268.
  • Rafsanjani H. K., Sedaaghi M. H. and Saryazdi S., (2017). “An adaptive diffusion coefficient selection for image denoising”, Digital Signal Processing, 64: 71-82.
  • Sakthidasan K., Sankaran A. and Velmurugan Nagappan N., (2016). “Noise free image restoration using hybrid filter with adaptive genetic algorithm”, Computers and Electrical Engineering, 54: 382-392.
  • Tomasi C. and Manduchi R., (1998). “Bilateral filtering for gray and color images”, IEEE Sixth Int. Conf. Computer Vision, Bombay, India, 839-846.
  • Vijaykumar V. R., Vanathi P.T. and Kanagasabapathy P., (2010). “Fast and Efficient Algorithm to Remove Gaussian Noise in Digital Images”, (IAENG) International Journal of Computer Science 37(1): 78-84.
  • Xiao Y., Zeng T., Yu J. and Michael K. Ng., (2011). “Restoration of images corrupted by mixed Gaussian-impulse noise via I1–I0 minimization”, Pattern Recognition 44: 1708-1720.
  • Zhang C. and Wang K., (2015). “A switching median–mean filter for removal of high-density impulse noise from digital images”, Optik, 126: 956-961.
There are 26 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Levent Gökrem

Uğur Erkan This is me

Publication Date June 29, 2018
Submission Date January 10, 2018
Published in Issue Year 2018 Volume: 10 Issue: 2

Cite

APA Gökrem, L., & Erkan, U. (2018). Mixed Noise Removal with External Parameter in Image Denoising. International Journal of Engineering Research and Development, 10(2), 135-142. https://doi.org/10.29137/umagd.376895

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.