Research Article
BibTex RIS Cite

Faster R-CNN Kullanarak Elmalarda Çürük Tespiti

Year 2019, Volume: 11 Issue: 1, 335 - 341, 31.01.2019
https://doi.org/10.29137/umagd.469929

Abstract

Bu çalışmada, elmalardan alınan görüntüler
üzerinde evrişimsel sinir ağı yöntemlerinden olan Faster R-CNN kullanılarak
elmaların çürük ve sağlam olarak sınıflandırılması amaçlanmaktadır. Önerilen
modelde işlem adımları sırasıyla görüntü alma-önişleme, çürük bölgelerin tespit
edilmesi ve elmaların sınıflandırması şeklindedir. Görüntü alma-önişleme
aşamasında, tasarlanan bir görüntü alma platformu içerisinde bulunan NIR kamera
kullanılmıştır. Çalışmada 100’ü çürük ve 100’ü sağlam olan toplam 200 adet
elmanın her birinin 6 farklı açısından toplam 1200 adet görüntü elde
edilmiştir. Önişleme aşamasında, bu görüntülere sırasıyla uyarlamalı histogram
eşitleme, kenar bulma, morfolojik işlemler uygulanmıştır. Önişlem uygulanarak
görünürlüğü iyileştirilen yeni görüntüler kullanılarak eğitilen Faster R-CNN
modeli ile çürük bölgeler tespit edilmiştir. Sınıflandırma aşamasında, çürük ve
sağlam elmaların tespit edilmesinde %84,95 doğru sınıflandırma oranına
ulaşılmıştır. Sonuç olarak, önerilen modelin meyve suyu gıda sanayisinde çürük
ve sağlam elmaların otomatik olarak tespit edilmesinde kullanılabileceği
düşünülmektedir. 

References

  • Artık, N. (2017, 13 Haziran). Meyve ve sebze üretim teknolojisi. Ankara Üniversitesi Ders Notları. Erişim: http://acikders.ankara.edu.tr/pluginfile.php/8059/mod_resource/content/0/1.%20hafta.pdf
  • Pandey, R., Naik, S., & Marfatia, R. (2013). Image processing and machine learning for automated fruit grading system: a technical review, International Journal of Computer Applications, 81, 29-39.
  • Xing, J., & Baerdemaeker, J. D. (2005). Bruise detection on ‘Jonagold’ apples using hyperspectral imaging, Postharvest Biology and Technology, 37(2), 152-162.
  • Mohana, S. H., & Prabhakar, C. J. (2015). Stem-Calyx Recognition of an Apple using Shape Descriptors. Signal & Image Processing : An International Journal (SIPIJ), 5(6), 17-31.
  • Dubey, S. R., & Jalal, A. S. (2016). Apple disease classification using color, texture and shape features from images, Signal, Image and Video Processing, 10(5), 819-826.
  • Sa, I., Ge, Z., Dayoub, F., Upcroft, B., Perez, T., & McCool, C. (2016). Deepfruits: A fruit detection system using deep neural networks, Sensors, 16(8), 1222.
  • Fuentes, A., Yoon, S., Kim, S. C., & Park, D. S. (2017). A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition, Sensors, 17(9), 2022.
  • Lu, Y., & Lu, R. (2017). Histogram-based automatic thresholding for bruise detection of apples by structured-illumination reflectance imaging, Biosystems Engineering, 160, 30-41.
  • Zhang, S., Wu, S., Zhang, S., Cheng, Q., & Tan, Z. (2017). An effective method to inspect and classify the bruising degree of apples based on the optical properties, Postharvest Biology and Technology, 127, 44-52.
  • [Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A survey, Computers and Electronics in Agriculture, 147, 70-90.
  • [Özcan, H. (2014). Çok Düşük Çözünürlüklü Yüz İmgelerinde Derin Öğrenme Uygulamaları, Yüksek Lisans Tezi, Bilgisayar Müh. Bölümü, Deniz Harp Okulu, İstanbul, Türkiye.
  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks, In Advances in neural information processing systems, 1097-1105.
  • Bengio, Y., Goodfellow, I., & Courville, A. (2016). Deep Learning, Cambridge, İngiltere, MIT yayınevi, 9, 326-366.
  • Girshick, R. (2015). Fast r-cnn, Proceedings of the IEEE international conference on computer vision, Santiago, Chile, 1440-1448.
  • Ren, S., He, K., Girshick, R., & Sun, J. (2017). Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis & Machine Intelligence, 6, 1137-1149.
  • Yang, S., Fang, B., Tang, W., Wu, X., Qian, J., & Yang, W. (2017). Faster R-CNN based microscopic cell detection, In Security, Pattern Analysis, and Cybernetics (SPAC), Shenzhen, China, 345-350.

Bruise Detection Using Faster R-CNN

Year 2019, Volume: 11 Issue: 1, 335 - 341, 31.01.2019
https://doi.org/10.29137/umagd.469929

Abstract

In this study, it is aimed to classify of the apples
as bruised and robust by using Faster R-CNN which is one of the convolutional
neural network methods on images taken from apple fruit. In the proposed model,
the process steps are the image acquisition-preprocessing, the determination of
the caries regions, and the classification of the apples. During the image
acquisition-preprocessing phase, a NIR camera is used, which is located within
a designed image acquisition platform. In the study, a total of 1200 images
were obtained from 6 different angles of each of a total of 200 apples, 100 of
which were bruised and 100 of which were robust. In the pre-processing phase,
adaptive histogram equalization, edge detection, morphological operations are
applied to these images, respectively. Caries were identified with the Faster
R-CNN model trained using new images with improved visibility by applying
preprocessing. In classification phase, 84.95% correct classification rate has
been reached in the detection of bruised and robust apples. As a result, it is
thought that the proposed model can be used for automatic detection of bruised
and robust apples in juice food industry.

References

  • Artık, N. (2017, 13 Haziran). Meyve ve sebze üretim teknolojisi. Ankara Üniversitesi Ders Notları. Erişim: http://acikders.ankara.edu.tr/pluginfile.php/8059/mod_resource/content/0/1.%20hafta.pdf
  • Pandey, R., Naik, S., & Marfatia, R. (2013). Image processing and machine learning for automated fruit grading system: a technical review, International Journal of Computer Applications, 81, 29-39.
  • Xing, J., & Baerdemaeker, J. D. (2005). Bruise detection on ‘Jonagold’ apples using hyperspectral imaging, Postharvest Biology and Technology, 37(2), 152-162.
  • Mohana, S. H., & Prabhakar, C. J. (2015). Stem-Calyx Recognition of an Apple using Shape Descriptors. Signal & Image Processing : An International Journal (SIPIJ), 5(6), 17-31.
  • Dubey, S. R., & Jalal, A. S. (2016). Apple disease classification using color, texture and shape features from images, Signal, Image and Video Processing, 10(5), 819-826.
  • Sa, I., Ge, Z., Dayoub, F., Upcroft, B., Perez, T., & McCool, C. (2016). Deepfruits: A fruit detection system using deep neural networks, Sensors, 16(8), 1222.
  • Fuentes, A., Yoon, S., Kim, S. C., & Park, D. S. (2017). A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition, Sensors, 17(9), 2022.
  • Lu, Y., & Lu, R. (2017). Histogram-based automatic thresholding for bruise detection of apples by structured-illumination reflectance imaging, Biosystems Engineering, 160, 30-41.
  • Zhang, S., Wu, S., Zhang, S., Cheng, Q., & Tan, Z. (2017). An effective method to inspect and classify the bruising degree of apples based on the optical properties, Postharvest Biology and Technology, 127, 44-52.
  • [Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A survey, Computers and Electronics in Agriculture, 147, 70-90.
  • [Özcan, H. (2014). Çok Düşük Çözünürlüklü Yüz İmgelerinde Derin Öğrenme Uygulamaları, Yüksek Lisans Tezi, Bilgisayar Müh. Bölümü, Deniz Harp Okulu, İstanbul, Türkiye.
  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks, In Advances in neural information processing systems, 1097-1105.
  • Bengio, Y., Goodfellow, I., & Courville, A. (2016). Deep Learning, Cambridge, İngiltere, MIT yayınevi, 9, 326-366.
  • Girshick, R. (2015). Fast r-cnn, Proceedings of the IEEE international conference on computer vision, Santiago, Chile, 1440-1448.
  • Ren, S., He, K., Girshick, R., & Sun, J. (2017). Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis & Machine Intelligence, 6, 1137-1149.
  • Yang, S., Fang, B., Tang, W., Wu, X., Qian, J., & Yang, W. (2017). Faster R-CNN based microscopic cell detection, In Security, Pattern Analysis, and Cybernetics (SPAC), Shenzhen, China, 345-350.
There are 16 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Onur Cömert

Mahmut Hekim

Kemal Adem This is me

Publication Date January 31, 2019
Submission Date October 12, 2018
Published in Issue Year 2019 Volume: 11 Issue: 1

Cite

APA Cömert, O., Hekim, M., & Adem, K. (2019). Faster R-CNN Kullanarak Elmalarda Çürük Tespiti. International Journal of Engineering Research and Development, 11(1), 335-341. https://doi.org/10.29137/umagd.469929

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.