Clustering-based Sales Forecasting in a Forklift Distributor
Year 2019,
Volume: 11 Issue: 1, 25 - 40, 31.01.2019
Pratiwi Eka Puspita
Tülin İnkaya
,
Mehmet Akansel
Abstract
Sales forecasting refers to the prediction of
future demand based on past data. A vast literature on sales forecasting has
accumulated due to its vital role in balancing demand and supply. Among these,
data mining has emerged as a powerful tool to facilitate sales forecasting. In
this study, we use data mining methods for accurate and reliable sales
forecasts in a forklift distributor company. Monthly sales data for 100
different types of forklifts between 1998 and 2016 are used. The proposed
forecasting methodology includes three steps. First, products with similar
sales patterns are determined using hierarchical clustering. Dynamic time
warping is applied to calculate the similarities among product sales data.
Second, features are extracted and selected for each cluster. In addition to
the features adopted from the literature, four new features are proposed to
characterize intermittency. Multivariate adaptive regression splines model is
used for feature selection. Third, support vector regression is used to predict
future sales of each product cluster. Finally, the performance of the proposed
approach is evaluated according to forecasting error and complexity. The
numerical analysis shows that the proposed approach gives reasonable accuracy
with less complexity.
References
- Agrawal, R., Faloutsos, C., & Swami, A. (1993). Efficient similarity search in sequence databases. The Fourth International Conference Foundations of Data Organization and Algorithms, 69-84. doi:10.1007/3-540-57301-1_5
- Bala, P.K. (2012). Improving inventory performance with clustering based demand forecasts. Journal of Modelling in Management, 7(1), 23-37. doi:10.1108/17465661211208794
- Bao, Y., Wang, W., & Zhang, J. (2004). Forecasting intermittent demand by SVMs regression. IEEE International Conference on Systems, Man and Cybernetics, 1, 461–466. doi:10.1109/icsmc.2004.1398341
- Bao, Y., Wang, W., & Zou, H. (2005). SVR-based method forecasting intermittent demand for service parts inventories. Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, 604–613. doi:10.1007/11548706_64
- Berndt, D., & Clifford, J. (1994). Using dynamic time warping to find patterns in time series. Workshop on Knowledge Knowledge Discovery in Databases, 398, 359–370.
- Biscarri, F., Monedero, I., García, A., Guerrero, J. I., & León, C. (2017). Electricity clustering framework for automatic classification of customer loads. Expert Systems with Applications, 86, 54–63. doi:10.1016/j.eswa.2017.05.049
- Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: forecasting and control. John Wiley & Sons.
Brown, R. G. (1959). Statistical forecasting for inventory control. McGraw/Hill.
- Chen, I. F., & Lu, C. J. (2017). Sales forecasting by combining clustering and machine-learning techniques for computer retailing. Neural Computing and Applications, 28(9), 2633–2647. doi:10.1007/s00521-016-2215-x
- Croston, J. D. (1972). Forecasting and stock control for intermittent demands. Operational Research Quarterly, 23(3), 289-303. doi:10.2307/3007885
- Dai, W., Chuang, Y.-Y., & Lu, C.-J. (2015). A Clustering-based sales forecasting scheme using support vector regression for computer server. Procedia Manufacturing, 2, 82–86. doi:10.1016/j.promfg.2015.07.014
- Das, S., & Padhy, S. (2012). Support vector machines for prediction of futures prices in Indian stock market. International Journal of Computer Applications, 41(3), 22–26. doi:10.5120/5522-7555
- Friedman, J. H. (1991). Multivariate adaptive regression splines. The Annals of Statistics, 19(1), 1–67.
- Han, J., Kamber, M., & Pei, J. (2012). Data mining: concepts and techniques. San Francisco, CA, Morgan Kaufmann.
- Hautamaki, V., Nykanen, P., & Franti, P. (2008). Time-series clustering by approximate prototypes. 19th International Conference on Pattern Recognition, 1–4. doi:10.1109/ICPR.2008.4761105
- Hua, Z., & Zhang, B. (2006). A hybrid support vector machines and logistic regression approach for forecasting intermittent demand of spare parts. Applied Mathematics and Computation, 181(2), 1035–1048. doi:10.1016/j.amc.2006.01.064
- Huber, J., Gossmann, A., & Stuckenschmidt, H. (2017). Cluster-based hierarchical demand forecasting for perishable goods. Expert Systems with Applications, 76, 140–151. doi:10.1016/j.eswa.2017.01.022
- Jain, A. K. (2010). Data clustering: 50 years beyond k-means. Pattern Recognition Letters, 31(8), 651–666. doi:10.1016/j.patrec.2009.09.011
- Keogh, E. (1997). A fast and robust method for pattern matching in time series databases. In: Proceedings of the 9th IEEE International Conference on Tools with Artificial Intelligence, pp. 578–584.
- Kumar, V., & Rathi, N. (2011). Knowledge discovery from database using an integration of clustering and classification. International Journal of Advanced Computer Science and Applications, 2(3), 29–33. doi:10.14569/ijacsa.2011.020306
- Kuo, R. J., & Li, P. S. (2016). Taiwanese export trade forecasting using firefly algorithm based K-means algorithm and SVR with wavelet transform. Computers and Industrial Engineering, 99, 153–161. doi:10.1016/j.cie.2016.07.012
- Levis, A. A., & Papageorgiou, L. G. (2005). Customer demand forecasting via support vector regression analysis. Chemical Engineering Research and Design, 83(8 A), 1009–1018. doi:10.1205/cherd.04246
- Lu, C.-J. (2014). Sales forecasting of computer products based on variable selection scheme and support vector regression. Neurocomputing, 128, 491–499. doi:10.1016/j.neucom.2013.08.012
- Lu, C. J., and Kao, L. J. 2016. A clustering-based sales forecasting scheme by using extreme learning machine and ensembling linkage methods with applications to computer server. Engineering Applications of Artificial Intelligence, 55: 231–238. doi:10.1016/j.engappai.2016.06.015
- Lu, C. J., Lee, T. S., and Chiu, C. C. 2009. Financial time series forecasting using independent component analysis and support vector regression. Decision Support Systems, 47(2): 115–125. doi:10.1016/j.dss.2009.02.001
- Lu, C. J., Lee, T. S., & Lian, C. M. (2012). Sales forecasting for computer wholesalers: A comparison of multivariate adaptive regression splines and artificial neural networks. Decision Support Systems, 54(1), 584–596. doi:10.1016/j.dss.2012.08.006
- Murray, P. W., Agard, B., & Barajas, M. A. (2017). Market segmentation through data mining: A method to extract behaviors from a noisy data set. Computers & Industrial Engineering, 109, 233–252. doi:10.1016/j.cie.2017.04.017
- Nalbantov, G., Groenen, P. J., & Bioch, J. C. (2005). Support vector regression basics. Medium Econometrische Toepassingen, 13(1), 16-19.
- Petitjean, F., Ketterlin, A., & Gançarski, P. (2011). A global averaging method for dynamic time warping, with applications to clustering. Pattern Recognition, 44(3), 678–693. doi:10.1016/j.patcog.2010.09.013
- Thissen, U., Van Brakel, R., De Weijer, A. P., Melssen, W. J., & Buydens, L. M. C. (2003). Using support vector machines for time series prediction. Chemometrics and Intelligent Laboratory Systems, 69(1–2), 35–49. doi:10.1016/S0169-7439(03)00111-4
- Thomassey, S., & Fiordaliso, A. (2006). A hybrid sales forecasting system based on clustering and decision trees. Decision Support Systems, 42(1), 408–421. doi:10.1016/j.dss.2005.01.008
- Vapnik, V. (1995). The Nature of Statistical Learning Theory. Springer Verlag. doi:10.1007/978-1-4757-2440-0
- Winters, P. R. (1960). Forecasting sales by exponentially weighted moving averages. Management Science, 6(3), 324–342. doi:10.1287/mnsc.6.3.324
- Wisner, J. D., Tan, K. C., & Leong, G. K. (2015). Principles of supply chain management: A balanced approach. Cengage Learning.
- Yoon, K. P., & Hwang, C. L. (1995). Multiple attribute decision making: an introduction. Sage publications.
- Yu, X., Qi, Z., & Zhao, Y. (2013). Support vector regression for newspaper/magazine sales forecasting. Procedia Computer Science, 17, 1055–1062. doi:10.1016/j.procs.2013.05.134
- Zuo, Y., Ali, A. B. M. S., & Yada, K. (2014). Consumer purchasing behavior extraction using statistical learning theory. Procedia Computer Science, 35, 1464–1473. doi:10.1016/j.procs.2014.08.209
Year 2019,
Volume: 11 Issue: 1, 25 - 40, 31.01.2019
Pratiwi Eka Puspita
Tülin İnkaya
,
Mehmet Akansel
References
- Agrawal, R., Faloutsos, C., & Swami, A. (1993). Efficient similarity search in sequence databases. The Fourth International Conference Foundations of Data Organization and Algorithms, 69-84. doi:10.1007/3-540-57301-1_5
- Bala, P.K. (2012). Improving inventory performance with clustering based demand forecasts. Journal of Modelling in Management, 7(1), 23-37. doi:10.1108/17465661211208794
- Bao, Y., Wang, W., & Zhang, J. (2004). Forecasting intermittent demand by SVMs regression. IEEE International Conference on Systems, Man and Cybernetics, 1, 461–466. doi:10.1109/icsmc.2004.1398341
- Bao, Y., Wang, W., & Zou, H. (2005). SVR-based method forecasting intermittent demand for service parts inventories. Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, 604–613. doi:10.1007/11548706_64
- Berndt, D., & Clifford, J. (1994). Using dynamic time warping to find patterns in time series. Workshop on Knowledge Knowledge Discovery in Databases, 398, 359–370.
- Biscarri, F., Monedero, I., García, A., Guerrero, J. I., & León, C. (2017). Electricity clustering framework for automatic classification of customer loads. Expert Systems with Applications, 86, 54–63. doi:10.1016/j.eswa.2017.05.049
- Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: forecasting and control. John Wiley & Sons.
Brown, R. G. (1959). Statistical forecasting for inventory control. McGraw/Hill.
- Chen, I. F., & Lu, C. J. (2017). Sales forecasting by combining clustering and machine-learning techniques for computer retailing. Neural Computing and Applications, 28(9), 2633–2647. doi:10.1007/s00521-016-2215-x
- Croston, J. D. (1972). Forecasting and stock control for intermittent demands. Operational Research Quarterly, 23(3), 289-303. doi:10.2307/3007885
- Dai, W., Chuang, Y.-Y., & Lu, C.-J. (2015). A Clustering-based sales forecasting scheme using support vector regression for computer server. Procedia Manufacturing, 2, 82–86. doi:10.1016/j.promfg.2015.07.014
- Das, S., & Padhy, S. (2012). Support vector machines for prediction of futures prices in Indian stock market. International Journal of Computer Applications, 41(3), 22–26. doi:10.5120/5522-7555
- Friedman, J. H. (1991). Multivariate adaptive regression splines. The Annals of Statistics, 19(1), 1–67.
- Han, J., Kamber, M., & Pei, J. (2012). Data mining: concepts and techniques. San Francisco, CA, Morgan Kaufmann.
- Hautamaki, V., Nykanen, P., & Franti, P. (2008). Time-series clustering by approximate prototypes. 19th International Conference on Pattern Recognition, 1–4. doi:10.1109/ICPR.2008.4761105
- Hua, Z., & Zhang, B. (2006). A hybrid support vector machines and logistic regression approach for forecasting intermittent demand of spare parts. Applied Mathematics and Computation, 181(2), 1035–1048. doi:10.1016/j.amc.2006.01.064
- Huber, J., Gossmann, A., & Stuckenschmidt, H. (2017). Cluster-based hierarchical demand forecasting for perishable goods. Expert Systems with Applications, 76, 140–151. doi:10.1016/j.eswa.2017.01.022
- Jain, A. K. (2010). Data clustering: 50 years beyond k-means. Pattern Recognition Letters, 31(8), 651–666. doi:10.1016/j.patrec.2009.09.011
- Keogh, E. (1997). A fast and robust method for pattern matching in time series databases. In: Proceedings of the 9th IEEE International Conference on Tools with Artificial Intelligence, pp. 578–584.
- Kumar, V., & Rathi, N. (2011). Knowledge discovery from database using an integration of clustering and classification. International Journal of Advanced Computer Science and Applications, 2(3), 29–33. doi:10.14569/ijacsa.2011.020306
- Kuo, R. J., & Li, P. S. (2016). Taiwanese export trade forecasting using firefly algorithm based K-means algorithm and SVR with wavelet transform. Computers and Industrial Engineering, 99, 153–161. doi:10.1016/j.cie.2016.07.012
- Levis, A. A., & Papageorgiou, L. G. (2005). Customer demand forecasting via support vector regression analysis. Chemical Engineering Research and Design, 83(8 A), 1009–1018. doi:10.1205/cherd.04246
- Lu, C.-J. (2014). Sales forecasting of computer products based on variable selection scheme and support vector regression. Neurocomputing, 128, 491–499. doi:10.1016/j.neucom.2013.08.012
- Lu, C. J., and Kao, L. J. 2016. A clustering-based sales forecasting scheme by using extreme learning machine and ensembling linkage methods with applications to computer server. Engineering Applications of Artificial Intelligence, 55: 231–238. doi:10.1016/j.engappai.2016.06.015
- Lu, C. J., Lee, T. S., and Chiu, C. C. 2009. Financial time series forecasting using independent component analysis and support vector regression. Decision Support Systems, 47(2): 115–125. doi:10.1016/j.dss.2009.02.001
- Lu, C. J., Lee, T. S., & Lian, C. M. (2012). Sales forecasting for computer wholesalers: A comparison of multivariate adaptive regression splines and artificial neural networks. Decision Support Systems, 54(1), 584–596. doi:10.1016/j.dss.2012.08.006
- Murray, P. W., Agard, B., & Barajas, M. A. (2017). Market segmentation through data mining: A method to extract behaviors from a noisy data set. Computers & Industrial Engineering, 109, 233–252. doi:10.1016/j.cie.2017.04.017
- Nalbantov, G., Groenen, P. J., & Bioch, J. C. (2005). Support vector regression basics. Medium Econometrische Toepassingen, 13(1), 16-19.
- Petitjean, F., Ketterlin, A., & Gançarski, P. (2011). A global averaging method for dynamic time warping, with applications to clustering. Pattern Recognition, 44(3), 678–693. doi:10.1016/j.patcog.2010.09.013
- Thissen, U., Van Brakel, R., De Weijer, A. P., Melssen, W. J., & Buydens, L. M. C. (2003). Using support vector machines for time series prediction. Chemometrics and Intelligent Laboratory Systems, 69(1–2), 35–49. doi:10.1016/S0169-7439(03)00111-4
- Thomassey, S., & Fiordaliso, A. (2006). A hybrid sales forecasting system based on clustering and decision trees. Decision Support Systems, 42(1), 408–421. doi:10.1016/j.dss.2005.01.008
- Vapnik, V. (1995). The Nature of Statistical Learning Theory. Springer Verlag. doi:10.1007/978-1-4757-2440-0
- Winters, P. R. (1960). Forecasting sales by exponentially weighted moving averages. Management Science, 6(3), 324–342. doi:10.1287/mnsc.6.3.324
- Wisner, J. D., Tan, K. C., & Leong, G. K. (2015). Principles of supply chain management: A balanced approach. Cengage Learning.
- Yoon, K. P., & Hwang, C. L. (1995). Multiple attribute decision making: an introduction. Sage publications.
- Yu, X., Qi, Z., & Zhao, Y. (2013). Support vector regression for newspaper/magazine sales forecasting. Procedia Computer Science, 17, 1055–1062. doi:10.1016/j.procs.2013.05.134
- Zuo, Y., Ali, A. B. M. S., & Yada, K. (2014). Consumer purchasing behavior extraction using statistical learning theory. Procedia Computer Science, 35, 1464–1473. doi:10.1016/j.procs.2014.08.209