İkili Al-17Si, üçlü
Al-17Si-4Cu ve dörtlü Al-17Si-4Cu-0,6Mg alaşımları kokil kalıba döküm
yöntemiyle üretildi. Üretilen alaşımların kimyasal bileşimleri spark optik
emisyon spektrometresi (Spark OES) yöntemi ile belirlenerek doğrulandı. İçyapı
incelemeleri standart metalografik yöntemlerle hazırlanan numuneler üzerinde
ışık ve taramalı elektron mikroskobu (SEM) ile gerçekleştirildi. Alaşımların
sertliği Brinell sertlik ölçme yöntemiyle, akma ve çekme dayanımı ile kopma
uzaması değerleri ise üniversal bir test makinesinde yapılan çekme deneyleri
ile belirlendi. Çekme deneylerine tabi tutulan numunelerin yüzeyleri ve yüzey
altları SEM’de incelenerek görüntülendi. Alaşımların tribolojik özellikleri bilye
disk esaslı bir deney düzeneği yardımıyla belirlendi. Al-17Si alaşımının
içyapısının alüminyumca zengin α, ötektik Al-Si, primer silisyum ve β
fazlarından, üçlü Al-17Si-4Cu alaşımının Al-17Si alaşımındaki fazların yanı
sıra bakırca zengin θ (CuAl2) fazını da içerdiği görüldü. Dörtlü Al-17Si-4Cu-0,6Mg
alaşımında ise üçlü Al-17Si-4Cu alaşımındaki fazlara ilave olarak Mg2Si
fazının oluştuğu ve ayrıca ikili ve üçlü alaşımda görülen β fazının dörtlü
alaşımda π fazına dönüştüğü belirlendi. Bakır ve magnezyum katkılarının
incelenen alaşımların sertlik, akma ve çekme dayanımı ile birlikte aşınma
direncini arttırdığı, kopma uzaması değerlerini ise düşürdüğü gözlendi. Mekanik
ve tribolojik deneylerden elde edilen sonuçlar alaşımların yapısal
özelliklerine dayandırılarak irdelendi.
Bacon, D.J., Kocks, U.F., & Scattergood, R.O. (1973). The effect of dislocation self-interaction on the orowan stress. Philosophical Magazine, 28(6), 1241-1263. doi: 10.1080/14786437308227997
Campbell, J. 2011. Complate casting handbook, Waltham, MA: Elsevier.
Channappagoudar, S., Sannayallappa, N., Desai, V., & Karodi, V. (2015). Influence of combined grain refinement and modification on the Microstructure, tensile strength and wear properties of Al-15Si, Al-15Si-4.5Cu alloys. International Journal of Materials Research, 106(9), 962-969. doi:10.3139/146.111270
Di Giovanni, M.T., Mørtsell, E.A., & Saito, T. (2019). Influence of Cu addition on the heat treatment response of A356 foundry alloy. Materials Today Communications, 19, 342-348. doi:10.1016/j.mtcomm.2019.02.013
Fatahalla, N.,Hafiz, M., & Abdulkhalek, M. (1999). Effect of microstructure on the mechanical properties and fracture of commercial hypoeutectic Al-Si alloy modified with Na, Sb and Sr. Journal of Materials Science, 34 (14), 3555-3564. doi:10.1023/A:1004626425326
Halling, J. (1978). Principles of Tribology. London, MA: The Macmillan Press Ltd.
Hiromi, N., & Wu, Y. (2016). Recent progress in eutectic silicon modification of Al-Si alloys. Special Casting and Nonferrous Alloys, 36(9), 924-930. doi:10.15980/j.tzzz.2016.09.008
Hutchings, I., & Shipway, P. (2017). Tribology Friction and Wear of Engineering Materials. MA: Elsevier
Jeon, J.H., Shin, J.H., & Bae, D.H. (2019). Si phase modification on the elevated temperature mechanical properties of Al-Si hypereutectic alloys. Materials Science and Engineering A, 748, 367-370. doi:10.1016/j.msea.2019.01.119
Jiao, X.Y., Wang, J., Liu, C.F., Guo, Z.P., Tong, G.D., Ma, S.L., Bi, Y., Zhang, Y.F., & Xiong, S.M. (2019). Characterization of high-pressure die-cast hypereutectic Al-Si alloys based on microstructural distribution and fracture morphology. Journal of Materials Science and Technology, 35(6), 1099-1107. doi:10.1016/j.jmst.2018.12.005
Jreidini, P., Kocher, G., & Provatas, N. (2018). Classical nucleation theory in the phase-field crystal model. Physical Review E, 97(4). doi:10.1103/PhysRevE.97.042802
Jorstad, J., & Apelian, D. (2009). Hypereutectic al-si alloys: Practical casting considerations. International Journal of Metalcasting, 3(3), 13-36. doi:10.1007/BF03355450
Kaba, M.,Donmez, A., Cukur, A., Kurban, A.F., Cubuklusu, H.E., & Birol, Y. (2018). AlSi5Mg0.3 Alloy for the manufacture of automotive wheels. International Journal of Metal Casting, 12 (3), 614-624. doi: 10.1007/s40962-017-0191-2
Kang, N., Coddet, P., Liao, H., Baur, T., & Coddet, C. (2016). Wear behavior and microstructure of hypereutectic Al-Si alloys prepared by selective laser melting. Applied Surface Science, 378, 142-149. doi: 10.1016/j.apsusc.2016.03.221
Kumar, S., & Tewari, S.P. (2018). Metallurgical and Mechanical characterization of A319 Aluminum Alloy Casting Solidified Under Mold Oscillation. International Journal of Metalcasting, 12(1), 28-35. doi:10.1007/s40962-017-0135-x
Lee, S.L., Cheng, Y.C., Chen, W.C., Lee, C.K., & Tan, A.H. (2012). Effects of strontium and heat treatment on the wear-corrosion property of Al-7Si-0.3Mg alloy. Materials Chemistry and Physics, 135(2-3), 2012, 503-509. doi: 10.1016/j.matchemphys.2012.05.015
Li, Q., Li, B., Li, J., Xia, T., Lan, Y., & Guo, T. (2017). Effects of the addition of Mg on the microstructure and mechanical properties of hypoeutectic Al-7%Si alloy. International Journal of Metalcasting, 11(4), 823-830. doi: 10.1007/s40962-016-0131-6
Medrano-Prieto, H.M., Garay-Reyes, C.G., Gómez-Esparza, C.D., Aguilar-Santillán, J., Maldonado-Orozco, M.C., & Martínez-Sánchez, R. (2016). Evolution of microstructure in Al-Si-Cu system modified with a transition element addition and its effect on hardness. Materials Research, 19, 59-66. doi: 10.1590/1980-5373-MR-2015-0673
Miller, W.S., Zhuang, L., Bottema, J., Wittebrood, A.J., De Smet, P., Haszler, A., & Vieregge A. (2000). Recent development in aluminium alloys for the automotive industry. Materials Science and Engineering A, 280 (1), 37-49, doi: 10.1016/S0921-5093(99)00653-X
Prabhudev, M.S., Auradi, V., Venkateswarlu, K., Siddalingswamy, N.H., & Kori, S.A. (2014). Influence of Cu addition on dry sliding wear behaviour of A356 alloy. Procedia Engineering, 97, 1361-1367. doi:10.1016/j.proeng.2014.12.417
Qi, M., Kang, Y., Qiu, Q., Tang, W., Li, J., & Li, B. (2018). Microstructures, mechanical properties, and corrosion behavior of novel high-thermal-conductivity hypoeutectic Al-Si alloys prepared by rheological high pressure die-casting and high pressure die-casting. Journal of Alloys and Compounds, 749, 487-502. doi: 10.1016/j.jallcom.2018.03.178
Salleh, M.S., Omar, M.Z., & Syarif, J. (2015). The effects of Mg addition on the microstructure and mechanical properties of thixoformed Al-5%Si-Cu alloys. Journal of Alloys and Compounds, 621. doi: 10.1016/j.jallcom.2014.09.152
Savaşkan, T. (2009). Malzeme bilgisi ve muayenesi. Trabzon, MA: Derya Kitabevi.
Savaşkan, T., & Hekimoǧlu, A.P. (2016). Relationships between mechanical and tribological properties of Zn-15Al-based ternary and quaternary alloys. International Journal of Materials Research, 107(7), 646-652. doi: 10.3139/146.111390
Slattery, B.E., Perry, T., Edrisy, A. (2009). Microstructural evolution of a eutectic Al-Si engine subjected to severe running conditions, Materials Science and Engineering A, 512 (1-2), 76-81. doi: 10.1016/j.msea.2009.01.025
Tiwari, K., Gautam, G., Kumar, N., Mohan, A., & Mohan, S. (2018). Effect of primary silicon refinement on mechanical and wear properties of a hypereutectic Al-Si alloy. Silicon, 10(5), 2227-2239. doi: 10.1007/s12633-017-9755-2
Effect of Copper and Magnesium Additions on the Structural, Mechanical and Tribological Properties of the Al-17Si Alloy
Year 2019,
Volume: 11 Issue: 2, 685 - 694, 30.06.2019
Binary Al-17Si, ternary Al-17Si-4Cu and quaternary
Al-17Si-4Cu-0.6Mg alloys were produced by permanent mold casting method. Chemical
composition of the produced alloys was confirmed by spark optical emission
spectrometry (Spark OES) method. Structural examinations of the alloys were
carried out with optical and scanning electron microscopy (SEM) on the samples
prepared by standard metallographic methods. The hardness of the alloys was
determined by the Brinell hardness measurement method. The hardness of the
alloys was determined by the Brinell hardness measurement method. The values of
the elongation to fracture, yield and tensile strength of the alloys produced
were determined by tensile tests performed with a universal testing machine. The
fracture surfaces and the sub-surfaces of the tensile test samples were
examined by SEM. Tribological characteristics of the alloys were investigated
by a ball-on-disc type friction-wear test machine. It was observed that
microstructure of the Al-17Si alloy consisted of the phases of aluminum-rich α,
eutectic Al-Si, primary silicon and β. Ternary Al-17Si-4Cu alloy showed a
microstructure consisting of the phase of θ(CuAl2) in addition to
phases observed in the Al-17Si alloy. Al-17Si-4Cu-0,6Mg alloy showed a
microstructure consisting of Mg2Si in the addition to the phases observed in
the ternary alloy. In addition to this the β phase observed in the ternary
alloy turned into π phase in the quaternary alloy. Copper and magnesium additions
resulted in an increase in the wear resistance, hardness, yield and tensile
strength of the alloys tested, but a decrease in the elongation to fracture. The
results obtained from mechanical and tribological tests were discussed on the
basis of structural changes observed in the alloys due to copper and magnesium
additions.
Bacon, D.J., Kocks, U.F., & Scattergood, R.O. (1973). The effect of dislocation self-interaction on the orowan stress. Philosophical Magazine, 28(6), 1241-1263. doi: 10.1080/14786437308227997
Campbell, J. 2011. Complate casting handbook, Waltham, MA: Elsevier.
Channappagoudar, S., Sannayallappa, N., Desai, V., & Karodi, V. (2015). Influence of combined grain refinement and modification on the Microstructure, tensile strength and wear properties of Al-15Si, Al-15Si-4.5Cu alloys. International Journal of Materials Research, 106(9), 962-969. doi:10.3139/146.111270
Di Giovanni, M.T., Mørtsell, E.A., & Saito, T. (2019). Influence of Cu addition on the heat treatment response of A356 foundry alloy. Materials Today Communications, 19, 342-348. doi:10.1016/j.mtcomm.2019.02.013
Fatahalla, N.,Hafiz, M., & Abdulkhalek, M. (1999). Effect of microstructure on the mechanical properties and fracture of commercial hypoeutectic Al-Si alloy modified with Na, Sb and Sr. Journal of Materials Science, 34 (14), 3555-3564. doi:10.1023/A:1004626425326
Halling, J. (1978). Principles of Tribology. London, MA: The Macmillan Press Ltd.
Hiromi, N., & Wu, Y. (2016). Recent progress in eutectic silicon modification of Al-Si alloys. Special Casting and Nonferrous Alloys, 36(9), 924-930. doi:10.15980/j.tzzz.2016.09.008
Hutchings, I., & Shipway, P. (2017). Tribology Friction and Wear of Engineering Materials. MA: Elsevier
Jeon, J.H., Shin, J.H., & Bae, D.H. (2019). Si phase modification on the elevated temperature mechanical properties of Al-Si hypereutectic alloys. Materials Science and Engineering A, 748, 367-370. doi:10.1016/j.msea.2019.01.119
Jiao, X.Y., Wang, J., Liu, C.F., Guo, Z.P., Tong, G.D., Ma, S.L., Bi, Y., Zhang, Y.F., & Xiong, S.M. (2019). Characterization of high-pressure die-cast hypereutectic Al-Si alloys based on microstructural distribution and fracture morphology. Journal of Materials Science and Technology, 35(6), 1099-1107. doi:10.1016/j.jmst.2018.12.005
Jreidini, P., Kocher, G., & Provatas, N. (2018). Classical nucleation theory in the phase-field crystal model. Physical Review E, 97(4). doi:10.1103/PhysRevE.97.042802
Jorstad, J., & Apelian, D. (2009). Hypereutectic al-si alloys: Practical casting considerations. International Journal of Metalcasting, 3(3), 13-36. doi:10.1007/BF03355450
Kaba, M.,Donmez, A., Cukur, A., Kurban, A.F., Cubuklusu, H.E., & Birol, Y. (2018). AlSi5Mg0.3 Alloy for the manufacture of automotive wheels. International Journal of Metal Casting, 12 (3), 614-624. doi: 10.1007/s40962-017-0191-2
Kang, N., Coddet, P., Liao, H., Baur, T., & Coddet, C. (2016). Wear behavior and microstructure of hypereutectic Al-Si alloys prepared by selective laser melting. Applied Surface Science, 378, 142-149. doi: 10.1016/j.apsusc.2016.03.221
Kumar, S., & Tewari, S.P. (2018). Metallurgical and Mechanical characterization of A319 Aluminum Alloy Casting Solidified Under Mold Oscillation. International Journal of Metalcasting, 12(1), 28-35. doi:10.1007/s40962-017-0135-x
Lee, S.L., Cheng, Y.C., Chen, W.C., Lee, C.K., & Tan, A.H. (2012). Effects of strontium and heat treatment on the wear-corrosion property of Al-7Si-0.3Mg alloy. Materials Chemistry and Physics, 135(2-3), 2012, 503-509. doi: 10.1016/j.matchemphys.2012.05.015
Li, Q., Li, B., Li, J., Xia, T., Lan, Y., & Guo, T. (2017). Effects of the addition of Mg on the microstructure and mechanical properties of hypoeutectic Al-7%Si alloy. International Journal of Metalcasting, 11(4), 823-830. doi: 10.1007/s40962-016-0131-6
Medrano-Prieto, H.M., Garay-Reyes, C.G., Gómez-Esparza, C.D., Aguilar-Santillán, J., Maldonado-Orozco, M.C., & Martínez-Sánchez, R. (2016). Evolution of microstructure in Al-Si-Cu system modified with a transition element addition and its effect on hardness. Materials Research, 19, 59-66. doi: 10.1590/1980-5373-MR-2015-0673
Miller, W.S., Zhuang, L., Bottema, J., Wittebrood, A.J., De Smet, P., Haszler, A., & Vieregge A. (2000). Recent development in aluminium alloys for the automotive industry. Materials Science and Engineering A, 280 (1), 37-49, doi: 10.1016/S0921-5093(99)00653-X
Prabhudev, M.S., Auradi, V., Venkateswarlu, K., Siddalingswamy, N.H., & Kori, S.A. (2014). Influence of Cu addition on dry sliding wear behaviour of A356 alloy. Procedia Engineering, 97, 1361-1367. doi:10.1016/j.proeng.2014.12.417
Qi, M., Kang, Y., Qiu, Q., Tang, W., Li, J., & Li, B. (2018). Microstructures, mechanical properties, and corrosion behavior of novel high-thermal-conductivity hypoeutectic Al-Si alloys prepared by rheological high pressure die-casting and high pressure die-casting. Journal of Alloys and Compounds, 749, 487-502. doi: 10.1016/j.jallcom.2018.03.178
Salleh, M.S., Omar, M.Z., & Syarif, J. (2015). The effects of Mg addition on the microstructure and mechanical properties of thixoformed Al-5%Si-Cu alloys. Journal of Alloys and Compounds, 621. doi: 10.1016/j.jallcom.2014.09.152
Savaşkan, T. (2009). Malzeme bilgisi ve muayenesi. Trabzon, MA: Derya Kitabevi.
Savaşkan, T., & Hekimoǧlu, A.P. (2016). Relationships between mechanical and tribological properties of Zn-15Al-based ternary and quaternary alloys. International Journal of Materials Research, 107(7), 646-652. doi: 10.3139/146.111390
Slattery, B.E., Perry, T., Edrisy, A. (2009). Microstructural evolution of a eutectic Al-Si engine subjected to severe running conditions, Materials Science and Engineering A, 512 (1-2), 76-81. doi: 10.1016/j.msea.2009.01.025
Tiwari, K., Gautam, G., Kumar, N., Mohan, A., & Mohan, S. (2018). Effect of primary silicon refinement on mechanical and wear properties of a hypereutectic Al-Si alloy. Silicon, 10(5), 2227-2239. doi: 10.1007/s12633-017-9755-2
Hekimoğlu, A. P., & Hacıosmanoğlu, M. (2019). Bakır ve Magnezyum Katkılarının Al-17Si Alaşımının Yapısal, Mekanik ve Tribolojik Özelliklerine Etkisi. International Journal of Engineering Research and Development, 11(2), 685-694. https://doi.org/10.29137/umagd.546562