Year 2020, Volume 12 , Issue 1, Pages 13 - 20 2020-01-31

Artificial Neural Network Modeling of The Removal of Cr (VI) on by Polymeric Calix[6]arene in aqueous solutions

Abdullah Erdal TÜMER [1]


The artificial neural network-based model was developed to predict the sorption capacity and removal efficiency of calixarene for Cr(VI) in aqueous solutions. The input variables were initial concentration of Cr(VI), adsorbent dosage, contact time, and pH, while the sorption capacity and the removal efficiency were considered as output. They have been used for the training and simulation of the network in the current work. The training results were tested using the input data (simulated data) that were not shown to the network. According to the indicator, the optimum and most reliable model was found based on the test results.

Artificial Neural Network, Modeling, Sorption, Removal Efficiency, Sorption Capacity
  • W.S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity, Bull. Math. Biophys. 5 (1943) 115–133. doi:10.1007/BF02478259.
  • T. Köhler, R. Bock, J. Hornegger, G. Michelson, Computer-Aided Diagnostics and Pattern Recognition: Automated Glaucoma Detection, in: Teleophthalmology Prev. Med., Springer Berlin Heidelberg, Berlin, Heidelberg, 2015: pp. 93–104. doi:10.1007/978-3-662-44975-2_9.
  • H. Gao, L. Liang, X. Chen, G. Xu, Feature extraction and recognition for rolling element bearing fault utilizing short-time Fourier transform and non-negative matrix factorization, Chinese J. Mech. Eng. 28 (2015) 96–105. doi:10.3901/CJME.2014.1103.166.
  • A. Azarpour, S.R. Wan Alwi, G. Zahedi, M. Madooli, G.J. Millar, Catalytic activity evaluation of industrial Pd/C catalyst via gray-box dynamic modeling and simulation of hydropurification reactor, Appl. Catal. A Gen. 489 (2015) 262–271. doi:10.1016/j.apcata.2014.10.048.
  • S. Lertworasirikul, Y. Tipsuwan, Moisture content and water activity prediction of semi-finished cassava crackers from drying process with artificial neural network, J. Food Eng. 84 (2008) 65–74. doi:10.1016/j.jfoodeng.2007.04.019.
  • I. Chairez, I. García-Peña, A. Cabrera, Dynamic numerical reconstruction of a fungal biofiltration system using differential neural network, J. Process Control. 19 (2009) 1103–1110. doi:10.1016/j.jprocont.2008.12.009.
  • N. Bounar, A. Boulkroune, F. Boudjema, M. M’Saad, M. Farza, Adaptive fuzzy vector control for a doubly-fed induction motor, Neurocomputing. 151 (2015) 756–769. doi:10.1016/j.neucom.2014.10.026.
  • W. Li, Z. Zhu, F. Jiang, G. Zhou, G. Chen, Fault diagnosis of rotating machinery with a novel statistical feature extraction and evaluation method, Mech. Syst. Signal Process. 50–51 (2015) 414–426. doi:10.1016/j.ymssp.2014.05.034.
  • C. Voyant, M.L. Nivet, C. Paoli, M. Muselli, G. Notton, Heterogeneous transfer functions multi-layer perceptron (MLP) for meteorological time series forecasting, Int. J. Model. Simulation, Sci. Comput. 6 (2015). doi:10.1142/S1793962315500130.
  • R. Todoran, D. Todoran, Z. Szakács, Optical luminescence studies of the ethyl xanthate adsorption layer on the surface of sphalerite minerals, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 152 (2016) 591–595. doi:10.1016/j.saa.2015.01.001.
  • A.M. Ghaedi, M. Ghaedi, P. Karami, Comparison of ultrasonic with stirrer performance for removal of sunset yellow (SY) by activated carbon prepared from wood of orange tree: Artificial neural network modeling, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 138 (2015) 789–799. doi:10.1016/j.saa.2014.11.019.
  • A.R. Amani-Ghadim, M.S.S. Dorraji, Modeling of photocatalyatic process on synthesized ZnO nanoparticles: Kinetic model development and artificial neural networks, Appl. Catal. B Environ. 163 (2015) 539–546. doi:10.1016/j.apcatb.2014.08.020.
  • G. Halder, S. Dhawane, P.K. Barai, A. Das, Optimizing chromium (VI) adsorption onto superheated steam activated granular carbon through response surface methodology and artificial neural network, Environ. Prog. Sustain. Energy. 34 (2015) 638–647. doi:10.1002/ep.12028.
  • E. Tomczak, Application of ANN and EA for description of metal ions sorption on chitosan foamed structure-Equilibrium and dynamics of packed column, Comput. Chem. Eng. 35 (2011) 226–235. doi:10.1016/j.compchemeng.2010.05.012.
  • S. Dutta, S. Parsons, C. Bhattacharjee, Development of an artificial neural network model for adsorption and photocatalysis of reactive dye on TiO 2 surface, Expert Syst. with. (2010). http://www.sciencedirect.com/science/article/pii/S0957417410005944 (accessed December 22, 2016).
  • Aber, A. Amani-Ghadim, V. Mirzajani, Removal of Cr (VI) from polluted solutions by electrocoagulation: Modeling of experimental results using artificial neural network, J. Hazard. Mater. (2009). http://www.sciencedirect.com/science/article/pii/S0304389409009406 (accessed December 22, 2016).
  • A. Sato, Z. Sha, S. Palosaari, Neural networks for chemical engineering unit operations, Chem. Eng. (1999). http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1521-4125(199909)22:9%3C732::AID-CEAT732%3E3.0.CO;2-1/full (accessed December 22, 2016).
  • P. Nayak, Y. Rao, K. Sudheer, Groundwater level forecasting in a shallow aquifer using artificial neural network approach, Water Resour. Manag. (2006). http://link.springer.com/article/10.1007/s11269-006-4007-z (accessed December 22, 2016).
  • R. Khandanlou, H. Masoumi, M. Ahmad, Enhancement of heavy metals sorption via nanocomposites of rice straw and Fe 3 O 4 nanoparticles using artificial neural network (ANN), Ecological. (2016). http://www.sciencedirect.com/science/article/pii/S0925857416301616 (accessed December 22, 2016).
  • U. Yurtsever, M. Yurtsever, İ. Şengil, Fast artificial neural network (FANN) modeling of Cd (II) ions removal by valonia resin, Water Treat. (2015). http://www.tandfonline.com/doi/abs/10.1080/19443994.2014.937756 (accessed December 22, 2016).
  • N. Mahmoodi, Dye adsorption from single and binary systems using NiO‐MnO2 nanocomposite and artificial neural network modeling, Environmental. (2016). http://onlinelibrary.wiley.com/doi/10.1002/ep.12452/full (accessed December 22, 2016).
  • A. Babaei, A. Khataee, E. Ahmadpour, Optimization of cationic dye adsorption on activated spent tea: Equilibrium, kinetics, thermodynamic and artificial neural network modeling, Korean J. (2016). http://link.springer.com/article/10.1007/s11814-014-0334-6 (accessed December 22, 2016).
  • M. Kooh, M. Dahri, L. Lim, L. Lim, Batch adsorption studies of the removal of methyl violet 2B by soya bean waste: isotherm, kinetics and artificial neural network modelling, Environ. Earth. (2016). http://link.springer.com/article/10.1007/s12665-016-5582-9 (accessed December 22, 2016).
  • N. Mahmoodi, Z. Hosseinabadi-Farahani, Synthesis of CuO–NiO nanocomposite and dye adsorption modeling using artificial neural network, Water Treat. (2016). http://www.tandfonline.com/doi/abs/10.1080/19443994.2015.1086895 (accessed December 22, 2016).
  • B. Heibati, S. Rodriguez-Couto, A modeling study by artificial neural network on ethidium bromide adsorption optimization using natural pumice and iron-coated pumice, Water Treat. (2016). http://www.tandfonline.com/doi/abs/10.1080/19443994.2015.1060906 (accessed December 22, 2016).
  • F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review, J. Environ. Manage. (2011). http://www.sciencedirect.com/science/article/pii/S0301479710004147 (accessed December 22, 2016).
  • D. Zhao, A. SenGupta, L. Stewart, Selective removal of Cr (VI) oxyanions with a new anion exchanger, Ind. Eng. (1998). http://pubs.acs.org/doi/abs/10.1021/ie980227r (accessed December 22, 2016).
  • A. Sengupta, D. Clifford, Important process variables in chromate ion exchange, Environ. Sci. Technol. (1986). http://pubs.acs.org/doi/abs/10.1021/es00144a006 (accessed December 22, 2016).
  • M. Asfari, V. Böhmer, J. Harrowfield, J. Vicens, Calixarenes 2001, (2007). https://www.google.com/books?hl=tr&lr=&id=M_fZBwAAQBAJ&oi=fnd&pg=PP8&dq=Calixarenes+2001&ots=dVUdxSFD1W&sig=k2tRhxNKOK_ajdUwHZtxZLtBo0M (accessed December 22, 2016).
  • C. Gutsche, Calixarenes: an introduction, (2008). https://www.google.com/books?hl=tr&lr=&id=Hi3YFJ2lcCgC&oi=fnd&pg=PA1&dq=Calixarenes:+an+introduction+2008&ots=X-utTwmczA&sig=fOaY5ozxFhYX952QOwuqdsb7Utg (accessed December 22, 2016).
  • H. Kang, C. Yoon, Neural network approaches to aid simple truss design problems, Comput. Civ. Infrastruct. (1994). http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8667.1994.tb00374.x/abstract (accessed December 22, 2016).
  • Heaton, Introduction to neural networks with Java, (2008). https://www.google.com/books?hl=tr&lr=&id=Swlcw7M4uD8C&oi=fnd&pg=PR35&dq=Introduction+to+Neural+Networks+with+Java&ots=TJB5Q39Xw7&sig=bWPN9b8SGlnpY2gMN60RNZ6eDt0 (accessed December 22, 2016).
  • R. Fu, T. Xu, Z. Pan, Modelling of the adsorption of bovine serum albumin on porous polyethylene membrane by back-propagation artificial neural network, J. Memb. Sci. (2005). http://www.sciencedirect.com/science/article/pii/S0376738804007525 (accessed December 22, 2016).
  • D. Rumelhart, G. Hinton, R. Williams, Learning internal representations by error propagation, (1985). http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA164453 (accessed December 22, 2016).
  • J. Self, Artificial intelligence and human learning, (1988). http://tocs.ulb.tu-darmstadt.de/8608482.pdf (accessed December 22, 2016).
  • M. Tabakci, Immobilization of calix arene bearing carboxylic acid and amide groups on aminopropyl silica gel and its sorption properties for Cr (VI), J. Incl. Phenom. Macrocycl. (2008). http://link.springer.com/article/10.1007/s10847-007-9392-2 (accessed December 22, 2016).
Primary Language en
Subjects Engineering, Multidisciplinary
Journal Section Articles
Authors

Orcid: 0000-0001-7747-9441
Author: Abdullah Erdal TÜMER (Primary Author)
Institution: Necmettin Erbakan University
Country: Turkey


Dates

Publication Date : January 31, 2020

APA Tümer, A . (2020). Artificial Neural Network Modeling of The Removal of Cr (VI) on by Polymeric Calix[6]arene in aqueous solutions . International Journal of Engineering Research and Development , 12 (1) , 13-20 . DOI: 10.29137/umagd.472269