Research Article
BibTex RIS Cite

Assessment of Mechanical and Thermal Properties of Juniperus Drupacea/Epoxy Biocomposite

Year 2020, Volume: 12 Issue: 1, 21 - 31, 31.01.2020
https://doi.org/10.29137/umagd.519643

Abstract

This paper presents
experimental data using estimated approach to determine some mechanical
properties of epoxy matrix based composites. For this reason, the epoxy matrix was
combined with the powdered materials obtained from different parts of the
juniperus drupacea seeds. In order to obtain a homogeneous structure ultrasonic
mixing technique was preferred. The Taguchi method is an alternative way to
characterize complex composite structures, to come from above the problems and
to investigate the effects of test parameters-factors by performing a few
experiments. In the study, the L9 Taguchi orthogonal array has been preferred.
Based on some production conditions; bio-reinforcement material has lowered the
average hardness value to 4.22 and formed a more soft structure in addition to
improving the tensile strength value by 46% compared to the neat sample.
Parametric study showed that; the most important parameter affecting hardness
and tensile strength are the mixing time and reinforcement ratio, respectively.

References

  • Dönmez, İ.E., (2005). Studies on the chemical compositions of syrian juniper (Arceuthos drupacea Ant. et. Kotschy), MSc dissertation, University of Zonguldak Karaelmas, Zonguldak, TURKEY.
  • Kocakulak, E., (2007). Researches on the essential oils of Juniperus drupacea Lab., PhD. dissertation, Gazi University, Ankara, TURKEY.
  • Akkaya, Z., (2010). Characterisation of the product obtained by drying of pekmez, MSc. dissertation, Ege University İzmir, TURKEY.
  • Karaca, İ., (2009). Determination of vitamin and mineral in fruit juice concentrates, MSc dissertation, İnönü University, Malatya, TURKEY.
  • Kara, M., & Kırıcı, M., (2017). Effects of the number of fatigue cycles on the impact behavior of glass fiber/epoxy composite tubes. Composites Part B: Engineering, 123, 55-63. https://doi.org/10.1016/j.compositesb.2017.04.021
  • Morkavuk, S., Köklü, U., Bağcı, M., & Gemi, L., Cryogenic machining of carbon fiber reinforced plastic (CFRP) compositesand the effects of cryogenic treatment on tensile properties: A comparative study. Composites Part B: Engineering, 147, 1-11. https://doi.org/10.1016/j.compositesb.2018.04.024
  • Gemi, L., Kara, M., & Avci A., (2016) Low velocity impact response of prestressed functionally graded hybrid pipes. Composites Part B: Engineering, 106 (1), 154-163. https://doi.org/10.1016/j.compositesb.2016.09.025
  • Karaağaç, B., (2013). Use of Ground Pistachio Shell as Alternative Fillerin Natural Rubber/Styrene–Butadiene Rubber-Based Rubber Compounds. Polymer Composites, 35, 2. 245-252. https://doi.org/10.1002/pc.22656 Lamrani, M., Laaroussi, N., Khabbazi, A., Khalfaoui, M., Garoum, M., & Feiz, A., (2017). Experimental study of thermal properties of a new ecological building material based on peanut shells and plaster. Case Studies in Construction Materials, 7, 294-304. https://doi.org/10.1016/j.cscm.2017.09.006
  • Harini, K., Mohan, C.C., Ramya, K., Karthıkeyan, S., & Sukumar, M., (2018). Effect of Punica granatum peel extracts on antimicrobial properties in Walnut shell cellulose reinforced Bio-thermoplastic starch films from cashew nut shells. Carbohydrate Polymers, 184, 231-242. https://doi.org/10.1016/j.carbpol.2017.12.072
  • Kasemsiri, P., Neramittagapong A., & Chindaprasirt, P., (2015). Effect of cashew nut shell liquid on gelation, cure kinetics, and thermomechanical properties of benzoxazine resin. Thermochimica Acta, 600, 20–27. https://doi.org/10.1016/j.tca.2011.03.020
  • Alomayri, T., Shaikh F.U.A., & Low, I.M., (2014). Effect of fabric orientation on mechanical properties of cotton fabric reinforced geopolymer composites”, Materials & Design, 57, 360–365. https://doi.org/10.1016/j.matdes.2014.01.036
  • Imoisili, P.E., Ezenwafor, T.C., Attah Daniel, B.E., & Olusunle, S.O.O., (2013). Mechanical Properties of Cocoa-Pod/Epoxy Composite; Effect of Filler Fraction. American Chemical Science Journal, 3(4): 526-531. DOI : 10.9734/ACSJ/2013/5526
  • Kuburi, L.S., Dauda, M., Obada, D.O., Umaru, S., Dodoo-Arhın, D., Iliyasu, I., Balogun, M.B., & Mustapha, S., (2017). Effects of Coir Fiber Loading on the Physio-mechanical and Morphological Properties of Coconut Shell Powder Filled Low Density Polyethylene Composites. Procedia Manufacturing, 7, 138-144. https://doi.org/10.1016/j.promfg.2016.12.036
  • Sarki, J., Hassan, S.B., Aigbodion V.S., & Oghenevweta, J.E., (2011). Potential of using coconut shell particle fillers in eco-composite materials. Journal of Alloys and Compounds, 509, 2381–2385. https://doi.org/10.1016/j.jallcom.2010.11.025
  • Mati-Baouche, N., De Baynast, H., Lebert, A., Sun, S., Lopez-Mingo, C.J.S., Leclaire, P., & Michaud, P., (2014). Mechanical, thermal and acoustical characterizations of an insulating bio-based composite made from sunflower stalks particles and chitosan. Industrial Crops and Products, 58, 244–250. https://doi.org/10.1016/j.indcrop.2014.04.022
  • Saba, N., Paridah, M.T., Abdan, K., & Ibrahim, N.A., (2016). Effect of oil palm nano filler on mechanical and morphological properties of kenaf reinforced epoxy composites. Construction and Building Materials, 123, 15–26. https://doi.org/10.1016/j.conbuildmat.2016.06.131
  • Matejka, V., Fu, Z., Kukutschová, J., Qi, S., Jiang, S., Zhang, X., Yun, R., Vaculík, M., Heliová, M., & Lu, Y., (2013). Jute fibers and powderized hazelnut shells as natural fillers in non-asbestos organic non-metallic friction composites. Materials & Design, 51, 847–853. https://doi.org/10.1016/j.matdes.2013.04.079
  • Johnson, M., Tucker, N., Barnes S., & Kırwan, K., (2005). Improvement of the impact performance of a starch based biopolymer via the incorporation of Miscanthus giganteus fibres. Industrial Crops and Products, 22, 175–186. https://doi.org/10.1016/j.indcrop.2004.08.004
  • Alavudeen, A., Rajini, N., Karthikeyan, S., Thiruchitrambalam M., & Venkateshwaren, N., (2015). Mechanical properties of banana/kenaf fiber-reinforced hybrid polyester composites: Effect of woven fabric and random orientation. Materials & Design, 66, 246-257. https://doi.org/10.1016/j.matdes.2014.10.067
  • Jingqiang, S., Yafeng, Z., Jindong, Q., & Jianzheng, K., (2004). Core-shell particles with an acrylate polyurethane core as tougheners for epoxy resins. Journal of Materials Science, 39 (20), 6383–6384. DOI: 10.1023/B:JMSC.0000043763.65417.4f
  • Day, R.J., Lovell, P.A., & Wazzan, A.A., (2001). Toughened carbon/epoxy composites made by using core/shell particles. Composites Science and Technology, 61, 41-56. https://doi.org/10.1016/S0266-3538(00)00169-X
  • Jumaidin, R., Sapuan, S.M., Jawaıd, M., Ishak, M.R., & Saharı, J., (2016). Characteristics of thermoplastic sugar palm Starch/Agar blend: Thermal, tensile, and physical properties. International Journal of Biological Macromolecules, 89, 575-581. https://doi.org/10.1016/j.ijbiomac.2016.05.028
  • Saba, N., Parıdah, M.T., Abdan K., & Ibrahım, N.A., (2016). Physical structural and thermomechanical properties of oil palm nano filler/kenaf/epoxy hybrid nanocomposites. Materials Chemistry and Physics, 184, 64-71. DOI: 10.1016/j.matchemphys.2016.09.026
  • Koçak, D., & Mıstık, S.I., (2015). The use of palm leaf fibres as reinforcements in composites. Biofiber Reinforcements in Composite Materials, 1st Ed., (pp. 273–281), Woodhead Publishing, Chapter 9, İstanbul,
  • Prabhakar, M.N., Shah, A.R., Chowdoji Rao, K., & Song, J.I., (2015). Mechanical And Thermal Properties of Epoxy Composites Reinforced With Waste Peanut Shell Powder As A Bio-Filler. Fibers and Polymers, 16, 5. DOI: 10.1007/s12221-015-1119-1
  • Fernández, J.A., Le Moıgne, N., Caro-Bretelle, A.S., El Hage, R., Le Duc, A., Lozachmeur, M., Bono, P., & Bergeret, A., (2016). Role Of Flax Cell Wall Components On The Microstructure And Transverse Mechanical Behaviour of Flax Fabrics Reinforced Epoxy Biocomposites, Cork–Polymer Biocomposites: Mechanical, Structural And Thermal Properties. Industrial Crops and Products, 85, 93-108.
  • Borchani, K.E., Carrot C., & Jaziri, M., (2015). Biocomposites of Alfa Fibers Dispersed in the Mater-Bi® Type Bioplastic: Morphology, Mechanical And Thermal Properties. Composites Part A: Applied Science and Manufacturing, 78, 371-379. https://doi.org/10.1016/j.compositesa.2015.08.023
  • Fernandes, E.M., Correlo, V.M., Mano, J.F., & Reıs, R.L., (2015). Cork–Polymer Biocomposites: Mechanical, Structural and Thermal Properties. Materials & Design, 82, 282-289. https://doi.org/10.1016/j.matdes.2015.05.040
  • Akbulut, M., Çoklar, H., & Özen, G., (2008). Rheological Characteristics of Juniperus drupacea Fruit Juice (pekmez) Concentrated by Boiling. Food Science and Technology International, 14, 321-328. https://doi.org/10.1177/1082013208097193
  • Akıncı, I., Özdemir, F., Topuz, A., Kabaş, O., & Çanakçı, M., (2004). Some physical and nutritional properties of Juniperus drupacea fruits. Journal of Food Engineering, 65, 325–331. https://doi.org/10.1016/j.jfoodeng.2004.01.029
Year 2020, Volume: 12 Issue: 1, 21 - 31, 31.01.2020
https://doi.org/10.29137/umagd.519643

Abstract

References

  • Dönmez, İ.E., (2005). Studies on the chemical compositions of syrian juniper (Arceuthos drupacea Ant. et. Kotschy), MSc dissertation, University of Zonguldak Karaelmas, Zonguldak, TURKEY.
  • Kocakulak, E., (2007). Researches on the essential oils of Juniperus drupacea Lab., PhD. dissertation, Gazi University, Ankara, TURKEY.
  • Akkaya, Z., (2010). Characterisation of the product obtained by drying of pekmez, MSc. dissertation, Ege University İzmir, TURKEY.
  • Karaca, İ., (2009). Determination of vitamin and mineral in fruit juice concentrates, MSc dissertation, İnönü University, Malatya, TURKEY.
  • Kara, M., & Kırıcı, M., (2017). Effects of the number of fatigue cycles on the impact behavior of glass fiber/epoxy composite tubes. Composites Part B: Engineering, 123, 55-63. https://doi.org/10.1016/j.compositesb.2017.04.021
  • Morkavuk, S., Köklü, U., Bağcı, M., & Gemi, L., Cryogenic machining of carbon fiber reinforced plastic (CFRP) compositesand the effects of cryogenic treatment on tensile properties: A comparative study. Composites Part B: Engineering, 147, 1-11. https://doi.org/10.1016/j.compositesb.2018.04.024
  • Gemi, L., Kara, M., & Avci A., (2016) Low velocity impact response of prestressed functionally graded hybrid pipes. Composites Part B: Engineering, 106 (1), 154-163. https://doi.org/10.1016/j.compositesb.2016.09.025
  • Karaağaç, B., (2013). Use of Ground Pistachio Shell as Alternative Fillerin Natural Rubber/Styrene–Butadiene Rubber-Based Rubber Compounds. Polymer Composites, 35, 2. 245-252. https://doi.org/10.1002/pc.22656 Lamrani, M., Laaroussi, N., Khabbazi, A., Khalfaoui, M., Garoum, M., & Feiz, A., (2017). Experimental study of thermal properties of a new ecological building material based on peanut shells and plaster. Case Studies in Construction Materials, 7, 294-304. https://doi.org/10.1016/j.cscm.2017.09.006
  • Harini, K., Mohan, C.C., Ramya, K., Karthıkeyan, S., & Sukumar, M., (2018). Effect of Punica granatum peel extracts on antimicrobial properties in Walnut shell cellulose reinforced Bio-thermoplastic starch films from cashew nut shells. Carbohydrate Polymers, 184, 231-242. https://doi.org/10.1016/j.carbpol.2017.12.072
  • Kasemsiri, P., Neramittagapong A., & Chindaprasirt, P., (2015). Effect of cashew nut shell liquid on gelation, cure kinetics, and thermomechanical properties of benzoxazine resin. Thermochimica Acta, 600, 20–27. https://doi.org/10.1016/j.tca.2011.03.020
  • Alomayri, T., Shaikh F.U.A., & Low, I.M., (2014). Effect of fabric orientation on mechanical properties of cotton fabric reinforced geopolymer composites”, Materials & Design, 57, 360–365. https://doi.org/10.1016/j.matdes.2014.01.036
  • Imoisili, P.E., Ezenwafor, T.C., Attah Daniel, B.E., & Olusunle, S.O.O., (2013). Mechanical Properties of Cocoa-Pod/Epoxy Composite; Effect of Filler Fraction. American Chemical Science Journal, 3(4): 526-531. DOI : 10.9734/ACSJ/2013/5526
  • Kuburi, L.S., Dauda, M., Obada, D.O., Umaru, S., Dodoo-Arhın, D., Iliyasu, I., Balogun, M.B., & Mustapha, S., (2017). Effects of Coir Fiber Loading on the Physio-mechanical and Morphological Properties of Coconut Shell Powder Filled Low Density Polyethylene Composites. Procedia Manufacturing, 7, 138-144. https://doi.org/10.1016/j.promfg.2016.12.036
  • Sarki, J., Hassan, S.B., Aigbodion V.S., & Oghenevweta, J.E., (2011). Potential of using coconut shell particle fillers in eco-composite materials. Journal of Alloys and Compounds, 509, 2381–2385. https://doi.org/10.1016/j.jallcom.2010.11.025
  • Mati-Baouche, N., De Baynast, H., Lebert, A., Sun, S., Lopez-Mingo, C.J.S., Leclaire, P., & Michaud, P., (2014). Mechanical, thermal and acoustical characterizations of an insulating bio-based composite made from sunflower stalks particles and chitosan. Industrial Crops and Products, 58, 244–250. https://doi.org/10.1016/j.indcrop.2014.04.022
  • Saba, N., Paridah, M.T., Abdan, K., & Ibrahim, N.A., (2016). Effect of oil palm nano filler on mechanical and morphological properties of kenaf reinforced epoxy composites. Construction and Building Materials, 123, 15–26. https://doi.org/10.1016/j.conbuildmat.2016.06.131
  • Matejka, V., Fu, Z., Kukutschová, J., Qi, S., Jiang, S., Zhang, X., Yun, R., Vaculík, M., Heliová, M., & Lu, Y., (2013). Jute fibers and powderized hazelnut shells as natural fillers in non-asbestos organic non-metallic friction composites. Materials & Design, 51, 847–853. https://doi.org/10.1016/j.matdes.2013.04.079
  • Johnson, M., Tucker, N., Barnes S., & Kırwan, K., (2005). Improvement of the impact performance of a starch based biopolymer via the incorporation of Miscanthus giganteus fibres. Industrial Crops and Products, 22, 175–186. https://doi.org/10.1016/j.indcrop.2004.08.004
  • Alavudeen, A., Rajini, N., Karthikeyan, S., Thiruchitrambalam M., & Venkateshwaren, N., (2015). Mechanical properties of banana/kenaf fiber-reinforced hybrid polyester composites: Effect of woven fabric and random orientation. Materials & Design, 66, 246-257. https://doi.org/10.1016/j.matdes.2014.10.067
  • Jingqiang, S., Yafeng, Z., Jindong, Q., & Jianzheng, K., (2004). Core-shell particles with an acrylate polyurethane core as tougheners for epoxy resins. Journal of Materials Science, 39 (20), 6383–6384. DOI: 10.1023/B:JMSC.0000043763.65417.4f
  • Day, R.J., Lovell, P.A., & Wazzan, A.A., (2001). Toughened carbon/epoxy composites made by using core/shell particles. Composites Science and Technology, 61, 41-56. https://doi.org/10.1016/S0266-3538(00)00169-X
  • Jumaidin, R., Sapuan, S.M., Jawaıd, M., Ishak, M.R., & Saharı, J., (2016). Characteristics of thermoplastic sugar palm Starch/Agar blend: Thermal, tensile, and physical properties. International Journal of Biological Macromolecules, 89, 575-581. https://doi.org/10.1016/j.ijbiomac.2016.05.028
  • Saba, N., Parıdah, M.T., Abdan K., & Ibrahım, N.A., (2016). Physical structural and thermomechanical properties of oil palm nano filler/kenaf/epoxy hybrid nanocomposites. Materials Chemistry and Physics, 184, 64-71. DOI: 10.1016/j.matchemphys.2016.09.026
  • Koçak, D., & Mıstık, S.I., (2015). The use of palm leaf fibres as reinforcements in composites. Biofiber Reinforcements in Composite Materials, 1st Ed., (pp. 273–281), Woodhead Publishing, Chapter 9, İstanbul,
  • Prabhakar, M.N., Shah, A.R., Chowdoji Rao, K., & Song, J.I., (2015). Mechanical And Thermal Properties of Epoxy Composites Reinforced With Waste Peanut Shell Powder As A Bio-Filler. Fibers and Polymers, 16, 5. DOI: 10.1007/s12221-015-1119-1
  • Fernández, J.A., Le Moıgne, N., Caro-Bretelle, A.S., El Hage, R., Le Duc, A., Lozachmeur, M., Bono, P., & Bergeret, A., (2016). Role Of Flax Cell Wall Components On The Microstructure And Transverse Mechanical Behaviour of Flax Fabrics Reinforced Epoxy Biocomposites, Cork–Polymer Biocomposites: Mechanical, Structural And Thermal Properties. Industrial Crops and Products, 85, 93-108.
  • Borchani, K.E., Carrot C., & Jaziri, M., (2015). Biocomposites of Alfa Fibers Dispersed in the Mater-Bi® Type Bioplastic: Morphology, Mechanical And Thermal Properties. Composites Part A: Applied Science and Manufacturing, 78, 371-379. https://doi.org/10.1016/j.compositesa.2015.08.023
  • Fernandes, E.M., Correlo, V.M., Mano, J.F., & Reıs, R.L., (2015). Cork–Polymer Biocomposites: Mechanical, Structural and Thermal Properties. Materials & Design, 82, 282-289. https://doi.org/10.1016/j.matdes.2015.05.040
  • Akbulut, M., Çoklar, H., & Özen, G., (2008). Rheological Characteristics of Juniperus drupacea Fruit Juice (pekmez) Concentrated by Boiling. Food Science and Technology International, 14, 321-328. https://doi.org/10.1177/1082013208097193
  • Akıncı, I., Özdemir, F., Topuz, A., Kabaş, O., & Çanakçı, M., (2004). Some physical and nutritional properties of Juniperus drupacea fruits. Journal of Food Engineering, 65, 325–331. https://doi.org/10.1016/j.jfoodeng.2004.01.029
There are 30 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Mustafa Taşyürek 0000-0001-9016-8584

Sait Aras

Publication Date January 31, 2020
Submission Date January 30, 2019
Published in Issue Year 2020 Volume: 12 Issue: 1

Cite

APA Taşyürek, M., & Aras, S. (2020). Assessment of Mechanical and Thermal Properties of Juniperus Drupacea/Epoxy Biocomposite. International Journal of Engineering Research and Development, 12(1), 21-31. https://doi.org/10.29137/umagd.519643

All Rights Reserved. Kırıkkale University, Faculty of Engineering.