Research Article
BibTex RIS Cite

Bir Otomobil Radyatörünün Isı Transfer Performansının Deneysel Olarak İncelenmesi

Year 2020, Volume: 12 Issue: 2, 370 - 379, 30.06.2020
https://doi.org/10.29137/umagd.678443

Abstract

Günümüz otomotiv teknolojisinde sıklıkla kullanılan içten yanmalı motorlar çalışma anında yüksek sıcaklıklara ulaşabilmektedir. Yüksek sıcaklıklar, motor parçalarında termal gerilmelere sebep olmakta ve motorun çalışma performansını düşürmekte hatta tamamen çalışmamasına sebep olabilmektedir. Dolayısıyla yüksek sıcaklıklara ulaşan motor parçalarının emniyetli çalışma sıcaklıklarına kadar soğutulması büyük önem arz etmektedir. Bu soğutma işlemi, genellikle bir aracı akışkanın, radyatörde bir fan aracılığı ile soğutulması ve motor bloğu içinde bulunan kanalların içerisinde dolaştırılması ile gerçekleşmektedir. Bir motorun soğutma sistemi birçok farklı elemandan oluşmakla beraber, sistemin performansını etkileyecek en önemli faktörlerden biride kullanılan radyatörün verimli çalışmasıdır. Otomobil radyatörlerinin ısı transfer performansının artırılması ile, soğutma sisteminin soğutma performansının artırılabilmesi doğru orantılıdır. Bu amaçla, bu çalışma kapsamında, bir otomobil radyatörünün çalışmasını temsil eden bir deney düzeneği kurulmuş olup, farklı çalışma parametreleri için deneyler yapılmıştır. Radyatör olarak seçilen çapraz akışlı ısı esanjörüne giren suyun debisi 420-1250 l/h aralığında, giriş sıcaklığı 45-65 °C aralığında ve soğutucu fan hava debisi ise 0,2761-0,5272 m3/s aralığında değiştirilerek deneyler tekrarlanmıştır. Deneylerden elde edilen veriler aracılığı ile radyatör içerisindeki akışın Nusselt sayısı, ısı taşınım katsayısı vb. değerleri belirlenerek, radyatörün soğutma performansı deneysel olarak irdelenmiştir. Sonuç olarak, hava hızı artışının, giren su debisi artışının ve esanjöre giriş su sıcaklığındaki artışın, Nusselt sayısı ve ısı taşınım katsayısında olumlu bir etki yaptığı, dolayısıyla radyatörden gerçekleşen ısı transferini artırdığı belirlenmiştir.

Supporting Institution

Kırıkkale Üniversitesi Bilimsel Araştirma Projeleri Koordinasyon Birimi (BAP)

Project Number

2019/057

Thanks

Kırıkkale Üniversitesi Bilimsel Araştirma Projeleri Koordinasyon Birimine (BAP) “2019/057 Numaralı Nanoakışkanların Otomobil Radyatörlerinde Kullanımının Deneysel Olarak İncelenmesi” adlı Bağımsız Projeye verdiği desteklerden dolayı bir teşekkürü borç biliriz.

References

  • Bošnjakovic, M., Muhic, S., & Cikic, A. (2019). Experimental Testing of the Heat Exchanger with Star-Shaped Fins, International Journal of Heat and Mass Transfer, 149, doi.org/10.1016/j.ijheatmasstransfer.2019.119190
  • Calisir, T., Yazar, H. O., & Baskaya S. (2019). Thermal Performance of PCCP Panel Radiators for Different Convector Dimensions –An Experimental and Numerical Study, International Journal of Thermal Sciences, 137, 375–387. doi.org/10.1016/j.ijthermalsci.2018.12.007
  • Canbolat, A. S. (2014). Otomobil Radyatörlerinin Isıl Performans Optimizasyonunun Nümerik İncelenmesi, Yüksek Lisans Tezi, Uludağ Üniversitesi Fen Bilimleri Enstitüsü, Bursa, Türkiye.
  • Cuevas, C., Makaire, D., Dardenne, & L, Ngendakumana, P. (2011). Thermo-Hydraulic Characterization of a Louvered Fin and Flat Tube Heat Exchanger, Experimental Thermal And Fluid Science, 35, 154–164 doi.org/10.1016/j.expthermflusci.2010.08.015
  • Çengel, Y. A., & Boles, A. M. (2006). Thermodynamics an Engineering Approach (5th. ed.). New York, McGraw-Hill.
  • Çengel, Y. A., & Cimbala, J. M. (2006). Fluid Mechanics Fundamentals and Applications (1st. ed.). New York, McGraw-Hill.
  • Dwivedi, V.D., & Rai, R. (2015). Modeling and Fluid Flow Analysis of Wavy Fin Based Automotive Radiator, Vishwa Deepak Dwivedi Int. Journal of Engineering Research and Applications, 5 (1), 17-26.
  • Gorobets, V., Bohdan, Y., Trokhaniak, V., & Antypov L., (2019). Investigations of Heat Transfer and Hydrodynamics in Heat Exchangers with Compact Arrangements of Tubes, Applied Thermal Engineering, 151, 46–54. doi.org/10.1016/j.applthermaleng.2019.01.059
  • Incropera, P.F., Dewitt, P. D., Bergman, L. T., & Lavine, S. A. (2007). Fundementals of Heat and Mass Transfer (6th. ed.). Hoboken, NJ, John Wiley & Sons.
  • Kakaç, S., & Liu, H. Pramuanjaroenkij A. (2012), Heat Exchangers Selection, Rating, and Thermal Design (3rd ed.). Boca Raton, FL, CRC Press.
  • Karthik, P., Kumaresan, V., & Velraj R. (2015). Experimental And Parametric Studies Of A Louvered Fin And Flat Tube Compact Heat Exchanger Using Computational Fluid Dynamics, Alexandria Engineering Journal, 54, 905–915. doi.org/10.1016/j.aej.2015.08.003
  • Kilicaslan, İ., & Sarac, H. İ. (1998). Enhancement of Heat Transfer in Compact Heat Exchanger by Different Type of Rib with Holographic Interferometry, Experimental Thermal and Fluid Science, 17, 339-346. doi.org/10.1016/S0894-1777(98)00006-5
  • Leu ,J.S., Liu, M.S., Liaw, M.S., & Wang, C.C. (2001). A Numerical Investigation of Louvered Fin and Tube Heat Exchangers Having Circular and Oval Tube Configurations, International Journal of Heat and Mass Transfer, 44, 4235-4243. doi.org/10.1016/S0017-9310(01)00081-3
  • Malapure, V.P., Sushanta, K. M., & Bhattacharya, A. (2007). Numerical Investigation of Fluid Flow and Heat Transfer over Louvered Fins in Compact Heat Exchanger, International Journal of Thermal Sciences, 46, 199–211. doi.org/10.1016/j.ijthermalsci.2006.04.010
  • Nuntaphan, A., Vithayasai, S., Kiatsiriroat, T., & Wang, C.C. (2007). Effect of Inclination Angle on Free Convection Thermal Performance of Louver Finned Heat Exchanger, International Journal of Heat and Mass Transfer, 50, 361–366. doi.org/10.1016/j.ijheatmasstransfer.2006.06.008
  • Ploskić, A., Wang, Q., & Sadrizadeh S. (2019). A Holistic Performance Evaluation of Ventilation Radiators – an Assessment According to EN 442-2 Using Numerical Simulations, Journal of Building Engineering, 25. doi.org/10.1016/j.jobe.2019.100818
  • Ravisankar, R., Venkatachalapathy, V. S. K., & Alagumurthy N. (2017). Thermal Performance Improvement of Tractor Radiator Using CuO/Water Nanofluid, Heat Transfer—Asian Research,46 1, 61-74. doi.org/10.1002/htj.21198 Vaisi, A., Esmaeilpour, M., & Taherian, H. (2011). Experimental Investigation of Geometry Effects on the Performance of a Compact Louvered Heat Exchanger. Applied Thermal Engineering, 31, 3337-3346. doi:10.1016/j.applthermaleng.2011.06.014

Experimental Investigation of Heat Transfer Performance of an Automobile Radiator

Year 2020, Volume: 12 Issue: 2, 370 - 379, 30.06.2020
https://doi.org/10.29137/umagd.678443

Abstract

Nowadays automobile technology, internal combustion engine is frequently used and this engines can be reached high tempature in working process. High temperatures cause thermal stresses in the engine parts and decrease the operating performance of the engine or even cause it to fail completely. Therefore, it is very important to cool the engine parts that reach high temperatures to safe operating temperatures. This cooling process usually takes place by cooling an intermediate fluid by means of a fan in the radiator and circulating it in the channels inside the engine block. An interal combustion engine’s cooling system consist of many different component and one of the most important component that will affect the efficient operation of the radiator used. It is directly proportional to increasing the cooling performance of the cooling system by increasing the heat transfer performance of automobile radiators. For this purpose, within the scope of this study, an experimental setup representing the operation of an automobile radiator has been established and experiments have been carried out for different operating parameters. Experiments were repeated by changing the volumetric flow rate of the water entering the cross flow heat exchanger selected as the radiator in the range of 420-1250 l/h, the inlet temperature in the range of 45-65 °C and the cooling fan air volumetric flow rate in the range of 0.2761-0.5272 m3/s. Through the data obtained from the experiments, the Nusselt number of the flow in the radiator, the heat transfer coefficient, etc. values and the cooling performance of the radiator was experimentally examined. As a result, it was determined that the increase in the air speed, the increase in the inlet water flow rate and the increase in the inlet water temperature to the heat exchanger had a positive effect on the Nusselt number and the heat transfer coefficient, thereby increasing the heat transfer from the radiator.

Project Number

2019/057

References

  • Bošnjakovic, M., Muhic, S., & Cikic, A. (2019). Experimental Testing of the Heat Exchanger with Star-Shaped Fins, International Journal of Heat and Mass Transfer, 149, doi.org/10.1016/j.ijheatmasstransfer.2019.119190
  • Calisir, T., Yazar, H. O., & Baskaya S. (2019). Thermal Performance of PCCP Panel Radiators for Different Convector Dimensions –An Experimental and Numerical Study, International Journal of Thermal Sciences, 137, 375–387. doi.org/10.1016/j.ijthermalsci.2018.12.007
  • Canbolat, A. S. (2014). Otomobil Radyatörlerinin Isıl Performans Optimizasyonunun Nümerik İncelenmesi, Yüksek Lisans Tezi, Uludağ Üniversitesi Fen Bilimleri Enstitüsü, Bursa, Türkiye.
  • Cuevas, C., Makaire, D., Dardenne, & L, Ngendakumana, P. (2011). Thermo-Hydraulic Characterization of a Louvered Fin and Flat Tube Heat Exchanger, Experimental Thermal And Fluid Science, 35, 154–164 doi.org/10.1016/j.expthermflusci.2010.08.015
  • Çengel, Y. A., & Boles, A. M. (2006). Thermodynamics an Engineering Approach (5th. ed.). New York, McGraw-Hill.
  • Çengel, Y. A., & Cimbala, J. M. (2006). Fluid Mechanics Fundamentals and Applications (1st. ed.). New York, McGraw-Hill.
  • Dwivedi, V.D., & Rai, R. (2015). Modeling and Fluid Flow Analysis of Wavy Fin Based Automotive Radiator, Vishwa Deepak Dwivedi Int. Journal of Engineering Research and Applications, 5 (1), 17-26.
  • Gorobets, V., Bohdan, Y., Trokhaniak, V., & Antypov L., (2019). Investigations of Heat Transfer and Hydrodynamics in Heat Exchangers with Compact Arrangements of Tubes, Applied Thermal Engineering, 151, 46–54. doi.org/10.1016/j.applthermaleng.2019.01.059
  • Incropera, P.F., Dewitt, P. D., Bergman, L. T., & Lavine, S. A. (2007). Fundementals of Heat and Mass Transfer (6th. ed.). Hoboken, NJ, John Wiley & Sons.
  • Kakaç, S., & Liu, H. Pramuanjaroenkij A. (2012), Heat Exchangers Selection, Rating, and Thermal Design (3rd ed.). Boca Raton, FL, CRC Press.
  • Karthik, P., Kumaresan, V., & Velraj R. (2015). Experimental And Parametric Studies Of A Louvered Fin And Flat Tube Compact Heat Exchanger Using Computational Fluid Dynamics, Alexandria Engineering Journal, 54, 905–915. doi.org/10.1016/j.aej.2015.08.003
  • Kilicaslan, İ., & Sarac, H. İ. (1998). Enhancement of Heat Transfer in Compact Heat Exchanger by Different Type of Rib with Holographic Interferometry, Experimental Thermal and Fluid Science, 17, 339-346. doi.org/10.1016/S0894-1777(98)00006-5
  • Leu ,J.S., Liu, M.S., Liaw, M.S., & Wang, C.C. (2001). A Numerical Investigation of Louvered Fin and Tube Heat Exchangers Having Circular and Oval Tube Configurations, International Journal of Heat and Mass Transfer, 44, 4235-4243. doi.org/10.1016/S0017-9310(01)00081-3
  • Malapure, V.P., Sushanta, K. M., & Bhattacharya, A. (2007). Numerical Investigation of Fluid Flow and Heat Transfer over Louvered Fins in Compact Heat Exchanger, International Journal of Thermal Sciences, 46, 199–211. doi.org/10.1016/j.ijthermalsci.2006.04.010
  • Nuntaphan, A., Vithayasai, S., Kiatsiriroat, T., & Wang, C.C. (2007). Effect of Inclination Angle on Free Convection Thermal Performance of Louver Finned Heat Exchanger, International Journal of Heat and Mass Transfer, 50, 361–366. doi.org/10.1016/j.ijheatmasstransfer.2006.06.008
  • Ploskić, A., Wang, Q., & Sadrizadeh S. (2019). A Holistic Performance Evaluation of Ventilation Radiators – an Assessment According to EN 442-2 Using Numerical Simulations, Journal of Building Engineering, 25. doi.org/10.1016/j.jobe.2019.100818
  • Ravisankar, R., Venkatachalapathy, V. S. K., & Alagumurthy N. (2017). Thermal Performance Improvement of Tractor Radiator Using CuO/Water Nanofluid, Heat Transfer—Asian Research,46 1, 61-74. doi.org/10.1002/htj.21198 Vaisi, A., Esmaeilpour, M., & Taherian, H. (2011). Experimental Investigation of Geometry Effects on the Performance of a Compact Louvered Heat Exchanger. Applied Thermal Engineering, 31, 3337-3346. doi:10.1016/j.applthermaleng.2011.06.014
There are 17 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Bahadır Gemicioğlu 0000-0001-8403-1848

Tolga Demircan 0000-0003-4805-6428

Project Number 2019/057
Publication Date June 30, 2020
Submission Date January 23, 2020
Published in Issue Year 2020 Volume: 12 Issue: 2

Cite

APA Gemicioğlu, B., & Demircan, T. (2020). Bir Otomobil Radyatörünün Isı Transfer Performansının Deneysel Olarak İncelenmesi. International Journal of Engineering Research and Development, 12(2), 370-379. https://doi.org/10.29137/umagd.678443

All Rights Reserved. Kırıkkale University, Faculty of Engineering.