Research Article
BibTex RIS Cite

Experimental Investigation of Thermal Behavior of Swirling Coaxial Impinging Air Jet for Near-Field Impingement Cases

Year 2020, Volume: 12 Issue: 2, 443 - 453, 30.06.2020
https://doi.org/10.29137/umagd.705238

Abstract

In this study, at the near-field impingement cases, the heat transfer characteristics of swirling coaxial impinging jets are experimentally investigated. In this context, different values of the dimensionless nozzle-to-plate distance (H / D = 0.2, 0.5, 0.75, 1.0) and the flowrate ratio (Q* = 0.33, 0.5, 0.66) are studied; and the combined effect of dimensionless nozzle-to-plate distance and flowrate ratio on thermal performance is researched. In the experiments, the total flowrate is kept constant at the value of 30 L/min; while the heating power is adjusted at the value of 18.2 W. A comparison with the conventional round jets is also performed over the temperature distribution of impingement plate. As a general trend, with increasing flowrate ratio, the area-averaged Nusselt numbers increase and the distribution of local Nusselt numbers has a more uniform character in the radial direction. For the smallest flowrate ratio and nozzle-to-plate distance, a significant enhancement occurs in the uniformity of heat transfer at the impingement region. Swirling coaxial jets improve the thermal performance much more compared to the conventional type jets.

References

  • Ahmed, M.R., & Sharma, S.D. (2000). Effect of velocity ratio on the turbulent mixing of confined, co-axial jets. Experimental Thermal and Fluid Science, 22, 19‒33. doi:10.1016/S0894-1777(00)00006-6
  • Ahmed, Z.U., Al-Abdeli, Y.M., & Guzzomi. F.G. (2016). Heat transfer characteristics of swirling and non-swirling impinging turbulent jets. International Journal of Heat and Mass Transfer, 102, 991–1003. doi:10.1016/j.ijheatmasstransfer.2016.06.037
  • Ahmed, Z.U., Al-Abdeli, Y.M., & Guzzomi. F.G. (2017). Flow field and thermal behaviour in swirling and non-swirling turbulent impinging jets. International Journal of Thermal Sciences, 114, 241−256. doi:10.1016/j.ijthermalsci.2016.12.013
  • Bakirci, K.., & Bilen, K. (2007). Visualization of heat transfer for impinging swirl flow. Experimental Thermal and Fluid Science, 32, 182–191. doi:10.1016/j.expthermflusci.2007.03.004
  • Balakrishnan, P., & Srinivasan, K. (2017). Jet noise reduction using co-axial swirl flow with curved vanes. Applied Acoustics, 126, 149–161. doi:10.1016/j.apacoust.2017.05.009
  • Biegger, C., Rao, Yu., & Weigand, B. (2018). Flow and heat transfer measurements in swirl tubes with one and multiple tangential inlet jets for internal gas turbine blade cooling. International Journal of Heat and Fluid Flow, 73, 174–187. doi: 10.1016/j.ijheatfluidflow.2018.07.011
  • Chang, S.W., & Shen, H.D. (2020). Heat transfer characteristics of swirling impinging jet-arrays issued from nozzle plates with and without webbed grooves. International Journal of Thermal Sciences, 148, 106155. doi:10.1016/j.ijthermalsci.2019.106155
  • Choo, K.S., & Kim, S.J. (2010). Comparison of thermal characteristics of confined and unconfined impinging jets. International Journal of Heat and Mass Transfer, 53, 3366–3371. doi:10.1016/j.ijheatmasstransfer.2010.02.023
  • Colucci, D.W., & Viskanta, R. (1996). Effect of nozzle geometry on local convective heat transfer to a confined impinging air jet. Experimental Thermal and Fluid Science, 13, 71−80. doi:10.1016/0894-1777(96)00015-5
  • Dixon, T.F., Truelove, J.S., & Wall, T.F. (1983). Aerodynamic studies on swirled coaxial jets from nozzles with divergent quarls. Journal of Fluids Engineering, 105, 197‒203. doi:10.1115/1.3240964
  • Eiamsa-ard. S., Nanan, K., & Wongcharee, K. (2015). Heat transfer visualization of co/counter-dual swirling impinging jets by thermochromic liquid crystal method. International Journal of Heat and Mass Transfer, 86: 600–621. doi:10.1016/j.ijheat masstransfer.2015.03.031
  • Ianiro, A., & Cardone, G. (2012). Heat transfer rate and uniformity in multichannel swirling impinging jets. Applied Thermal Engineering, 49, 89−98. doi:10.1016/j.applthermaleng.2011.10.018
  • Ikhlaq, M., Al-Abdeli, Y.M., & Khiadani, M. (2019). Transient heat transfer characteristics of swirling and non-swirling turbulent impinging jets. Experimental Thermal and Fluid Science, 109, 109917. doi:10.1016/j.exp thermflusci.2019.109917
  • Huang, L., & EL-Genk, M.S. (1998). Heat transfer and flow visualization experiments of swirling, multi-channel, and conventional impinging jets. International Journal of Heat and Mass Transfer, 41, 583–600. doi:10.1016/S0017-931 0(97)00123-3
  • Kline, S.J., McClintock, F.A. (1953). Describing uncertainties in single-sample experiments. Mechanical Engineering, 75(1) 3–8.
  • Kurnia, J.C., Sasmito, A.P., Tong, W., & Mujumdar, A.S. (2013). Energy-efficient thermal drying using impinging-jets with time-varying heat input – A computational study. Journal of Food Engineering, 114, 269–277. doi:10.1016/j.jfoodeng.2012.08. 029
  • Lee, D.H., Won, S.Y., Kim, Y.T., & Chung, Y.S. (2002). Turbulent heat transfer from a flat surface to a swirling round impinging jet. International Journal of Heat and Mass Transfer, 45(1), 223–227. doi:10.1016/S0017-9310(01)00135-1
  • Markal, B. (2018). Experimental investigation of heat transfer characteristics and wall pressure distribution of swirling coaxial confined impinging air jets. International Journal of Heat and Mass Transfer124: 517–532. doi:10.1016/j.ijheatmasstransfer. 2018.03.101
  • Markal, B. (2019). The effect of Total flowrate on the cooling performance of swirling coaxial impinging jets. Heat and Mass Transfer, 55, 3275–3288. doi:10.1007/s00231-019-02653-7
  • Markal, B., & Aydin, O. (2018). Experimental investigation of coaxial impinging air jets. Applied Thermal Engineering, 141, 1120–1130. doi:10.1016/j.applthermaleng.2018.06.066
  • Nanan, K., Wongcharee, K., Nuntadusit, C., & Eiamsa-ard, S. (2012). Forced convective heat transfer by swirling impinging jets issuing from nozzles equipped with twisted tapes. International Communications in Heat and Mass Transfer, 39, 844–852. doi: 10.1016/j.icheatmasstransfer.2012.05.002
  • Nuntadusit, C., Wae-hayee, M., Bunyajitradulya, A., & Eiamsa-ard, S. (2012). Heat transfer enhancement by multiple swirling impinging jets with twisted-tape swirl generators. International Communications in Heat and Mass Transfer, 39, 102–107. doi:10.1016/j.icheatmasstransfer.2011.10.003
  • Öztekin, E., Aydin, O., & Avcı, M. (2013). Heat transfer in a turbulent slot jet flow impinging on concave surfaces. International Communications in Heat and Mass Transfer, 44, 77–82. doi:10.1016/j.icheatmasstransfer.2013.03.006
  • Singh, P., & Chander, S. (2018). Heat transfer and fluid flow characteristics of a pair of interacting dual swirling flame jets impinging on a flat surface. International Journal of Heat and Mass Transfer, 124, 90–108. doi:10.1016/j.ijheat masstransfer.2018.03.034
  • Uddin, N., Weigand, B., & Younis, B.A. (2019). Comparative study on heat transfer enhancement by turbulent impinging jet under conditions of swirl, active excitations and passive excitations. International Communications in Heat and Mass Transfer, 100, 35–41. doi:10.1016/j.icheatmasstransfer.2018.12.002
  • Walker, J.D.A., Smith, C.R., Cerra, A.W., & Doligalski, T.L. (1987). The impact of a vortex ring on a wall. Journal of Fluid Mechanics, 181, 99-140. doi:10.1017/S0022112087002027
  • Wannassi, M., & Monnoyer, F. (2015). Fluid flow and convective heat transfer of combined swirling and straight impinging jet arrays. Applied Thermal Engineering, 78, 62‒73. doi:10.1016/j.applthermaleng.2014.12.043
  • Xu, L., Lan, J., Ma, Y.,, Gao, J., & Li, Y. (2017). Numerical study on heat transfer by swirling impinging jets issuing from a screw-thread nozzle. International Journal of Heat and Mass Transfer, 115, 232–237. doi:10.1016/j.ijheatmasstransfer.2017.07.0 53
  • Yang, H.Q., Kim, T., Lu, T.J., & Ichimiya, K. (2010). Flow structure, wall pressure and heat transfer characteristics of impinging annular jet with/without steady swirling. International Journal of Heat and Mass Transfer, 53, 4092–4100. doi:10.1016/j.ijheat masstransfer.2010.05.029

Dönmeli Eş-Eksenli Hava Jetinin Isıl Davranışının Yakın Çarpma Mesafeleri için Deneysel Olarak İncelenmesi

Year 2020, Volume: 12 Issue: 2, 443 - 453, 30.06.2020
https://doi.org/10.29137/umagd.705238

Abstract

Bu çalışmada, yakın çarpma mesafesi değerlerinde, dönmeli eş-eksenli çarpan jetlerin ısı transfer karakteristikleri deneysel olarak incelenmiştir. Bu kapsamda, farklı boyutsuz lüle-plaka arası mesafeler (H / D = 0.2, 0.5, 0.75, 1.0) ve debi oranlarında (Q* = 0.33, 0.5, 0.66) çalışılmış ve boyutsuz lüle-plaka arası mesafe ile debi oranının ısıl performans üzerindeki bütünleşik etkisi araştırılmıştır. Deneylerde, toplam debi 30 L/dk değerinde sabit tutulmuş olup; ısıtma gücü, tüm koşullarda 18.2 W değerine ayarlanmıştır. Ayrıca, çarpma plakasının sıcaklık dağılımları üzerinden konvansiyonel dairesel jetlerle karşılaştırma da yapılmıştır. Genel eğilim olarak, artan debi oranı ile alan ağırlıklı ortalama Nusselt sayıları artmakta ve yerel Nusselt sayısı dağılımları radyal doğrultuda daha üniform karaktere sahip olmaktadır. En küçük debi oranı ve lüle-plaka arası mesafe için çarpma bölgesinde ısı transferinin üniformluğunda belirgin bir iyileşme meydana gelmektedir. Dönmeli eş-eksenli jetler, konvansiyonel tip jetlere kıyasla ısıl performansı önemli ölçüde artırmaktadır.

References

  • Ahmed, M.R., & Sharma, S.D. (2000). Effect of velocity ratio on the turbulent mixing of confined, co-axial jets. Experimental Thermal and Fluid Science, 22, 19‒33. doi:10.1016/S0894-1777(00)00006-6
  • Ahmed, Z.U., Al-Abdeli, Y.M., & Guzzomi. F.G. (2016). Heat transfer characteristics of swirling and non-swirling impinging turbulent jets. International Journal of Heat and Mass Transfer, 102, 991–1003. doi:10.1016/j.ijheatmasstransfer.2016.06.037
  • Ahmed, Z.U., Al-Abdeli, Y.M., & Guzzomi. F.G. (2017). Flow field and thermal behaviour in swirling and non-swirling turbulent impinging jets. International Journal of Thermal Sciences, 114, 241−256. doi:10.1016/j.ijthermalsci.2016.12.013
  • Bakirci, K.., & Bilen, K. (2007). Visualization of heat transfer for impinging swirl flow. Experimental Thermal and Fluid Science, 32, 182–191. doi:10.1016/j.expthermflusci.2007.03.004
  • Balakrishnan, P., & Srinivasan, K. (2017). Jet noise reduction using co-axial swirl flow with curved vanes. Applied Acoustics, 126, 149–161. doi:10.1016/j.apacoust.2017.05.009
  • Biegger, C., Rao, Yu., & Weigand, B. (2018). Flow and heat transfer measurements in swirl tubes with one and multiple tangential inlet jets for internal gas turbine blade cooling. International Journal of Heat and Fluid Flow, 73, 174–187. doi: 10.1016/j.ijheatfluidflow.2018.07.011
  • Chang, S.W., & Shen, H.D. (2020). Heat transfer characteristics of swirling impinging jet-arrays issued from nozzle plates with and without webbed grooves. International Journal of Thermal Sciences, 148, 106155. doi:10.1016/j.ijthermalsci.2019.106155
  • Choo, K.S., & Kim, S.J. (2010). Comparison of thermal characteristics of confined and unconfined impinging jets. International Journal of Heat and Mass Transfer, 53, 3366–3371. doi:10.1016/j.ijheatmasstransfer.2010.02.023
  • Colucci, D.W., & Viskanta, R. (1996). Effect of nozzle geometry on local convective heat transfer to a confined impinging air jet. Experimental Thermal and Fluid Science, 13, 71−80. doi:10.1016/0894-1777(96)00015-5
  • Dixon, T.F., Truelove, J.S., & Wall, T.F. (1983). Aerodynamic studies on swirled coaxial jets from nozzles with divergent quarls. Journal of Fluids Engineering, 105, 197‒203. doi:10.1115/1.3240964
  • Eiamsa-ard. S., Nanan, K., & Wongcharee, K. (2015). Heat transfer visualization of co/counter-dual swirling impinging jets by thermochromic liquid crystal method. International Journal of Heat and Mass Transfer, 86: 600–621. doi:10.1016/j.ijheat masstransfer.2015.03.031
  • Ianiro, A., & Cardone, G. (2012). Heat transfer rate and uniformity in multichannel swirling impinging jets. Applied Thermal Engineering, 49, 89−98. doi:10.1016/j.applthermaleng.2011.10.018
  • Ikhlaq, M., Al-Abdeli, Y.M., & Khiadani, M. (2019). Transient heat transfer characteristics of swirling and non-swirling turbulent impinging jets. Experimental Thermal and Fluid Science, 109, 109917. doi:10.1016/j.exp thermflusci.2019.109917
  • Huang, L., & EL-Genk, M.S. (1998). Heat transfer and flow visualization experiments of swirling, multi-channel, and conventional impinging jets. International Journal of Heat and Mass Transfer, 41, 583–600. doi:10.1016/S0017-931 0(97)00123-3
  • Kline, S.J., McClintock, F.A. (1953). Describing uncertainties in single-sample experiments. Mechanical Engineering, 75(1) 3–8.
  • Kurnia, J.C., Sasmito, A.P., Tong, W., & Mujumdar, A.S. (2013). Energy-efficient thermal drying using impinging-jets with time-varying heat input – A computational study. Journal of Food Engineering, 114, 269–277. doi:10.1016/j.jfoodeng.2012.08. 029
  • Lee, D.H., Won, S.Y., Kim, Y.T., & Chung, Y.S. (2002). Turbulent heat transfer from a flat surface to a swirling round impinging jet. International Journal of Heat and Mass Transfer, 45(1), 223–227. doi:10.1016/S0017-9310(01)00135-1
  • Markal, B. (2018). Experimental investigation of heat transfer characteristics and wall pressure distribution of swirling coaxial confined impinging air jets. International Journal of Heat and Mass Transfer124: 517–532. doi:10.1016/j.ijheatmasstransfer. 2018.03.101
  • Markal, B. (2019). The effect of Total flowrate on the cooling performance of swirling coaxial impinging jets. Heat and Mass Transfer, 55, 3275–3288. doi:10.1007/s00231-019-02653-7
  • Markal, B., & Aydin, O. (2018). Experimental investigation of coaxial impinging air jets. Applied Thermal Engineering, 141, 1120–1130. doi:10.1016/j.applthermaleng.2018.06.066
  • Nanan, K., Wongcharee, K., Nuntadusit, C., & Eiamsa-ard, S. (2012). Forced convective heat transfer by swirling impinging jets issuing from nozzles equipped with twisted tapes. International Communications in Heat and Mass Transfer, 39, 844–852. doi: 10.1016/j.icheatmasstransfer.2012.05.002
  • Nuntadusit, C., Wae-hayee, M., Bunyajitradulya, A., & Eiamsa-ard, S. (2012). Heat transfer enhancement by multiple swirling impinging jets with twisted-tape swirl generators. International Communications in Heat and Mass Transfer, 39, 102–107. doi:10.1016/j.icheatmasstransfer.2011.10.003
  • Öztekin, E., Aydin, O., & Avcı, M. (2013). Heat transfer in a turbulent slot jet flow impinging on concave surfaces. International Communications in Heat and Mass Transfer, 44, 77–82. doi:10.1016/j.icheatmasstransfer.2013.03.006
  • Singh, P., & Chander, S. (2018). Heat transfer and fluid flow characteristics of a pair of interacting dual swirling flame jets impinging on a flat surface. International Journal of Heat and Mass Transfer, 124, 90–108. doi:10.1016/j.ijheat masstransfer.2018.03.034
  • Uddin, N., Weigand, B., & Younis, B.A. (2019). Comparative study on heat transfer enhancement by turbulent impinging jet under conditions of swirl, active excitations and passive excitations. International Communications in Heat and Mass Transfer, 100, 35–41. doi:10.1016/j.icheatmasstransfer.2018.12.002
  • Walker, J.D.A., Smith, C.R., Cerra, A.W., & Doligalski, T.L. (1987). The impact of a vortex ring on a wall. Journal of Fluid Mechanics, 181, 99-140. doi:10.1017/S0022112087002027
  • Wannassi, M., & Monnoyer, F. (2015). Fluid flow and convective heat transfer of combined swirling and straight impinging jet arrays. Applied Thermal Engineering, 78, 62‒73. doi:10.1016/j.applthermaleng.2014.12.043
  • Xu, L., Lan, J., Ma, Y.,, Gao, J., & Li, Y. (2017). Numerical study on heat transfer by swirling impinging jets issuing from a screw-thread nozzle. International Journal of Heat and Mass Transfer, 115, 232–237. doi:10.1016/j.ijheatmasstransfer.2017.07.0 53
  • Yang, H.Q., Kim, T., Lu, T.J., & Ichimiya, K. (2010). Flow structure, wall pressure and heat transfer characteristics of impinging annular jet with/without steady swirling. International Journal of Heat and Mass Transfer, 53, 4092–4100. doi:10.1016/j.ijheat masstransfer.2010.05.029
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Articles
Authors

Burak Markal 0000-0001-6356-3503

Publication Date June 30, 2020
Submission Date March 17, 2020
Published in Issue Year 2020 Volume: 12 Issue: 2

Cite

APA Markal, B. (2020). Dönmeli Eş-Eksenli Hava Jetinin Isıl Davranışının Yakın Çarpma Mesafeleri için Deneysel Olarak İncelenmesi. International Journal of Engineering Research and Development, 12(2), 443-453. https://doi.org/10.29137/umagd.705238

All Rights Reserved. Kırıkkale University, Faculty of Engineering.