Polypropylene/Chemical Blowing Agent Foams: Effect of the Injection Speed and Core Back Distance on Microstructure and Mechanical Properties
Year 2020,
Volume: 12 Issue: 2, 638 - 647, 30.06.2020
Meral Akkoyun
,
İbrahim Badem
Mert Emre Öztoksoy
Yeşim Aslan
Abstract
In recent years, many parts of the automotive industry, previously made of metal, has been passed to polymers due to their light weight, ie lower carbon emission and fuel consumption advantage. The aim of this work was to investigate the microstructure and mechanical properties of chemical foaming agent added polypropylene foam samples produced by injection molding. In particular, the effects of injection speed and core back distance on the evolution of cell diameter, compact outer layer thickness, cell density and mechanical properties were examined. In the first step the effect of various injection speeds (110; 125; 140 mm/s) was investigated. Then, various core back positions (0; 0.7 and 1.5 mm) were analyzed at a constant injection speed (110 mm/s). The results showed an increase of the cell diameter, the compact outer layer thickness and the elastic modulus as the injection speed increases. In addition, an important effect of the core back distance was observed with the presence of a critical core back distance. Below this critical value, the cell diameter and the elastic modulus drop due to a notable decrease of the skin layer thickness. Above this critical value, the cells started to collapse and lose their circularity.
Supporting Institution
The Scientific Research Projects Units of Bursa Technical University
Thanks
Tofaş Türk Otomobil Fabrikası A.Ş., Farplas Otomotiv A.Ş. and Karel Kalıp San. A.Ş. are gratefully acknowledged for the production of PP/CBA foams at different processing conditions. The Scientific Research Projects Units of Bursa Technical University (under the contract number of 172L09) are also gratefully acknowledged for their financial support.
References
- Ameli, A., Jahani, D., Nofar, M., Jung, P. U., Park, C. B. (2014). Development of high void fraction polylactide composite foams using injection molding: mechanical and thermal insulation properties. Composites Science and Technology, 90, 88-95. doi:10.1016/j.compscitech.2013.10.019
- Ameli, A., Nofar, M., Jahani, D., Rizvi, G., Park, C. B. (2015). Development of high void fraction polylactide composite foams using injection molding: crystallization and foaming behaviors. Chemical Engineering Journal, 262, 78-87. doi:10.1016/j.cej.2014.09.087
- Chu, R. K. M., Mark, L. H., Jahani, D., Park, C. B. (2016). Estimation of the foaming temperature of mold- opening foam injection molding process. Journal of Cellular Plastics, 52(6), 619-641. doi:10.1177/0021955X15592069
- Ishikawa, T. & Ohshima, M. (2011). Visual observation and numerical studies of polymer foaming behavior of polypropylene/carbon dioxide system in a core-back injection molding process. Polymer Engineering and Science, 51(8), 1617-1625. doi:10.1002/pen.21945
- Ishikawa, T., Taki, K., Ohshima, M. (2012). Visual observation and numerical studies of N2 vs. CO2 foaming behavior in core-back foam injection molding. Polymer Engineering and Science, 52(4), 875-883. doi:10.1002/pen.22154
- Jahani, D., Ameli, A., Jung, P. U., Barzegari, M. R., Park, C. B., Naguib, H. (2014). Open-cell cavity integrated injection-molded acoustic polypropylene foams. Materials & Design, 53, 20-28. doi:10.1016/j.matdes.2013.06.063
- Lyu, M. Y., Choi, T. G. (2015). Research trends in polymer materials for use in lightweight vehicles. International Journal of Precision Engineering and Manufacturing, 16, 213-220. doi:10.1007/s12541-015-0029-x
- Miyamoto, R., Yasuhara, S., Shikuma, H. (2014). Preparation of micro/nanocellular polypropylene foam with crystal nucleating agents. Polymer Engineering and Science, 54(9), 2075-2085. doi:10.1002/pen.23758
- Reglero Ruiz, J. A., Vincent, M., Agassant, J.-F. (2016). Numerical modeling of bubble growth in microcellular polypropylene produced in a core-back injection process using chemical blowing agents. International Polymer Processing, 31(1), 26-36. doi:10.3139/217.3129
- Reglero Ruiz, J. A., Vincent, M., Agassant, J.-F., Claverie, A., Huck, S. (2015). Morphological analysis of microcellular PP produced in a core-back injection process using chemical blowing agents and gas counter pressure. Polymer Engineering and Science, 55(11), 2465-2473. doi:10.1002/pen.24136
- Ries, S., Spoerrer, A., Altstaedt, V. (2013). Foam injection molding of thermoplastic elastomers: Blowing agents, foaming process and characterization of structural foams. AIP Conference Proceedings; 15-19 July 2013; Nuremberg, Germany. AIP: 1593.
- Ruiz, J. R., Vincent, M., Agassant, J., Sadik, T., Pillon, C., Carrot, C. (2015). Polymer foaming with chemical blowing agents: Experiment and modeling. Polymer Engineering and Science, 55(9), 2018-2029. doi:10.1002/pen.24044
- Saiz-Arroyo, C., de Saja, J. A., Velasco, J. I., Rodriguez-Perez, M.A. (2012). Moulded polypropylene foams produced using chemical or physical blowing agents: structure–properties relationship. Journal of Materials Science, 47, 5680-5692. doi:10.1007/s10853-012-6357-7
- Shaayegan, V., Wang, C., Costa, F., Han. S., Park, C. B. (2017). Effect of the melt compressibility and the pressure drop rate on the cell- nucleation behavior in foam injection molding with mold opening. European Polymer Journal, 92, 314-325. doi:10.1016/j.eurpolymj.2017.05.003
- Sporrer, A. N. J. & Altstadt, V. (2007). Controlling morphology of injection molded structural foams by mold design and processing parameters. Journal of Cellular Plastics, 43(4-5), 313-330. doi:10.1177/0021955X07079043
- Stumpf, M., Sporrer, A., Schmidt, H. W. (2011). Influence of supramolecular additives on foam morphology of injection-molded i-PP.
Journal of Cellular Plastics, 47(6), 519-534. doi:10.1177/0021955X11408769
- Tomasko, D. L., Burley, A., Feng, L., Yeh, S. K., Miyazono, K., Nirmal-Kumar, S., Kusaka, I., Koelling, K. (2009). Development of CO2 for polymer foam applications. The Journal of Supercritical Fluids, 47(3), 493-499. doi:10.1016/j.supflu.2008.10.018
- Wang, L., Ishihara, S., Hikima, Y., Ohshima, M., Sekiguchi, T., Sato, A., Yano, H. (2017). Unprecedented development of ultrahigh expansion injection-molded polypropylene foams by introducing hydrophobic-modified cellulose nanofibers. ACS Applied Materials & Interfaces, 9(11), 9250-9254. doi:10.1021/acsami.7b01329
- Wu, H., Zhao, G., Wang, J., Wang, G., Zhang, W. (2019). Effects of process parameters on core-back foam injection molding process. eXPRESS Polymer Letters, 13(4), 390-405. doi:10.3144/expresspolymlett.2019.32
- Wu, H., Zhao, G., Wang, G., Zhang, W., Li, Y. (2018). A new core-back foam injection molding method with chemical blowing agents. Materials & Design, 144, 331-342. doi:10.1016/j.matdes.2018.02.043
- Xi, Z., Chen, J., Liu, T., Zhao, L., Turng, L. (2016). Experiment and simulation of foaming injection molding of polypropylene/nano-calcium carbonate composites by supercritical carbon dioxide. Chinese Journal of Chemical Engineering, 24(1), 180-189. doi:10.1016/j.cjche.2015.11.016
- Zhang, Z. X., Li, Y. N., Xia, L., Ma, Z. G., Xin, Z. X., Lim, J. K. (2014). Fabrication of superhydrophobic film by microcellular plastic foaming method. Applied Physics A, 117, 755-759. doi:10.1007/s00339-014-8615-9
- Zhao, J., Zhao, Q., Wang, C., Guo, B., Park, C. B., Wang, G. (2017). High thermal insulation and compressive strength polypropylene foams fabricated by high-pressure foam injection molding and mold opening of nano-fibrillar composites. Materials & Design, 131, 1-11. doi:10.1016/j.matdes.2017.05.093
Year 2020,
Volume: 12 Issue: 2, 638 - 647, 30.06.2020
Meral Akkoyun
,
İbrahim Badem
Mert Emre Öztoksoy
Yeşim Aslan
References
- Ameli, A., Jahani, D., Nofar, M., Jung, P. U., Park, C. B. (2014). Development of high void fraction polylactide composite foams using injection molding: mechanical and thermal insulation properties. Composites Science and Technology, 90, 88-95. doi:10.1016/j.compscitech.2013.10.019
- Ameli, A., Nofar, M., Jahani, D., Rizvi, G., Park, C. B. (2015). Development of high void fraction polylactide composite foams using injection molding: crystallization and foaming behaviors. Chemical Engineering Journal, 262, 78-87. doi:10.1016/j.cej.2014.09.087
- Chu, R. K. M., Mark, L. H., Jahani, D., Park, C. B. (2016). Estimation of the foaming temperature of mold- opening foam injection molding process. Journal of Cellular Plastics, 52(6), 619-641. doi:10.1177/0021955X15592069
- Ishikawa, T. & Ohshima, M. (2011). Visual observation and numerical studies of polymer foaming behavior of polypropylene/carbon dioxide system in a core-back injection molding process. Polymer Engineering and Science, 51(8), 1617-1625. doi:10.1002/pen.21945
- Ishikawa, T., Taki, K., Ohshima, M. (2012). Visual observation and numerical studies of N2 vs. CO2 foaming behavior in core-back foam injection molding. Polymer Engineering and Science, 52(4), 875-883. doi:10.1002/pen.22154
- Jahani, D., Ameli, A., Jung, P. U., Barzegari, M. R., Park, C. B., Naguib, H. (2014). Open-cell cavity integrated injection-molded acoustic polypropylene foams. Materials & Design, 53, 20-28. doi:10.1016/j.matdes.2013.06.063
- Lyu, M. Y., Choi, T. G. (2015). Research trends in polymer materials for use in lightweight vehicles. International Journal of Precision Engineering and Manufacturing, 16, 213-220. doi:10.1007/s12541-015-0029-x
- Miyamoto, R., Yasuhara, S., Shikuma, H. (2014). Preparation of micro/nanocellular polypropylene foam with crystal nucleating agents. Polymer Engineering and Science, 54(9), 2075-2085. doi:10.1002/pen.23758
- Reglero Ruiz, J. A., Vincent, M., Agassant, J.-F. (2016). Numerical modeling of bubble growth in microcellular polypropylene produced in a core-back injection process using chemical blowing agents. International Polymer Processing, 31(1), 26-36. doi:10.3139/217.3129
- Reglero Ruiz, J. A., Vincent, M., Agassant, J.-F., Claverie, A., Huck, S. (2015). Morphological analysis of microcellular PP produced in a core-back injection process using chemical blowing agents and gas counter pressure. Polymer Engineering and Science, 55(11), 2465-2473. doi:10.1002/pen.24136
- Ries, S., Spoerrer, A., Altstaedt, V. (2013). Foam injection molding of thermoplastic elastomers: Blowing agents, foaming process and characterization of structural foams. AIP Conference Proceedings; 15-19 July 2013; Nuremberg, Germany. AIP: 1593.
- Ruiz, J. R., Vincent, M., Agassant, J., Sadik, T., Pillon, C., Carrot, C. (2015). Polymer foaming with chemical blowing agents: Experiment and modeling. Polymer Engineering and Science, 55(9), 2018-2029. doi:10.1002/pen.24044
- Saiz-Arroyo, C., de Saja, J. A., Velasco, J. I., Rodriguez-Perez, M.A. (2012). Moulded polypropylene foams produced using chemical or physical blowing agents: structure–properties relationship. Journal of Materials Science, 47, 5680-5692. doi:10.1007/s10853-012-6357-7
- Shaayegan, V., Wang, C., Costa, F., Han. S., Park, C. B. (2017). Effect of the melt compressibility and the pressure drop rate on the cell- nucleation behavior in foam injection molding with mold opening. European Polymer Journal, 92, 314-325. doi:10.1016/j.eurpolymj.2017.05.003
- Sporrer, A. N. J. & Altstadt, V. (2007). Controlling morphology of injection molded structural foams by mold design and processing parameters. Journal of Cellular Plastics, 43(4-5), 313-330. doi:10.1177/0021955X07079043
- Stumpf, M., Sporrer, A., Schmidt, H. W. (2011). Influence of supramolecular additives on foam morphology of injection-molded i-PP.
Journal of Cellular Plastics, 47(6), 519-534. doi:10.1177/0021955X11408769
- Tomasko, D. L., Burley, A., Feng, L., Yeh, S. K., Miyazono, K., Nirmal-Kumar, S., Kusaka, I., Koelling, K. (2009). Development of CO2 for polymer foam applications. The Journal of Supercritical Fluids, 47(3), 493-499. doi:10.1016/j.supflu.2008.10.018
- Wang, L., Ishihara, S., Hikima, Y., Ohshima, M., Sekiguchi, T., Sato, A., Yano, H. (2017). Unprecedented development of ultrahigh expansion injection-molded polypropylene foams by introducing hydrophobic-modified cellulose nanofibers. ACS Applied Materials & Interfaces, 9(11), 9250-9254. doi:10.1021/acsami.7b01329
- Wu, H., Zhao, G., Wang, J., Wang, G., Zhang, W. (2019). Effects of process parameters on core-back foam injection molding process. eXPRESS Polymer Letters, 13(4), 390-405. doi:10.3144/expresspolymlett.2019.32
- Wu, H., Zhao, G., Wang, G., Zhang, W., Li, Y. (2018). A new core-back foam injection molding method with chemical blowing agents. Materials & Design, 144, 331-342. doi:10.1016/j.matdes.2018.02.043
- Xi, Z., Chen, J., Liu, T., Zhao, L., Turng, L. (2016). Experiment and simulation of foaming injection molding of polypropylene/nano-calcium carbonate composites by supercritical carbon dioxide. Chinese Journal of Chemical Engineering, 24(1), 180-189. doi:10.1016/j.cjche.2015.11.016
- Zhang, Z. X., Li, Y. N., Xia, L., Ma, Z. G., Xin, Z. X., Lim, J. K. (2014). Fabrication of superhydrophobic film by microcellular plastic foaming method. Applied Physics A, 117, 755-759. doi:10.1007/s00339-014-8615-9
- Zhao, J., Zhao, Q., Wang, C., Guo, B., Park, C. B., Wang, G. (2017). High thermal insulation and compressive strength polypropylene foams fabricated by high-pressure foam injection molding and mold opening of nano-fibrillar composites. Materials & Design, 131, 1-11. doi:10.1016/j.matdes.2017.05.093