Year 2020, Volume 12 , Issue 2, Pages 648 - 663 2020-06-30

Simetrik ve Simetrik Olmayan Katman Düzenlerine Sahip Kompozit Sargılı Boruların Tasarımı
Design of Composite Winding Pipes with Symmetrical and Non-Symmetrical Layer Layouts

Barış KALAYCIOĞLU [1] , Hakan ARSLAN [2] , M. Burakhan AKGÜN [3]


Bu çalışmada, iki faklı katman düzeninde sarılmış 65 mm dış çapa, 1.7 mm cidar kalınlığa sahip ve 650 mm boyundaki Cam Elyaf / Epoksi kompozit silindirik boruların patlama basıncı değerleri analitik ve sayısal yöntemler yardımıyla elde edilmiştir. Daha sonra kompozit borular elyaf sarım yöntemi yardımıyla 4 eksenli CNC kompozit sarım tezgahında, [90º, ±55º, 90º] simetrik ve [±55º, 90º, 90º] simetrik olmayan katman düzenlerinde üretilmiş ve hidrostatik basınç testine tabi tutulmuştur. Boruların teorik analizleri Katman Teorisi yardımıyla yapılmış, hasar kriteri olarak Tsai-Wu hasar kriteri kullanılmıştır. Sayısal analizler ANSYS Sonlu Eleman Programı kullanılarak gerçekleştirilmiş, programda kompozit boruların modellenmesinde kompozit katmanın elyaf sarım açılarını doğru şekilde tanımlayabilmek için eleman koordinat sisteminin bu açılara uygun şekilde yönlendirilmesi sağlanmıştır. Yapılan analizler sonucunda; analitik, sayısal ve deneysel patlama basıncı değerleri ile analitik ve sayısal analizler sonucu kompozit boruların katmanlarında oluşan elyaf yönü ve elyaf yönüne dik doğrultudaki birim şekil değiştirme ve gerilme değerleri karşılaştırılmıştır. Elde edilen sonuçlara göre, farklı sarım açıları için analitik, sayısal ve deneysel sonuçların birbirleri ile uyumlu çıktığı görülmüştür.
In this study, values of bursting pressure of the glass fiber/epoxy composite cylindrical pipes wrapped in two different layers configuration with 65 mm outside diameter, 1.7 mm wall thickness and 650 mm length were obtained with the help of analytical, numerical methods. Then, composite pipes were manufactured on the 4 axis CNC composite winding machine with the help of the Filament Winding Method in [90º, ± 55º, 90º] symmetrical and [± 55º, 90º, 90º] non-symmetrical layers configuration. The theoretical analysis of pipes made with Lamination Theory; Tsai Wu failure criteria was used. Numerical analysis was performed on the ANSYS Finite Element Program, In the program for modelling to correctly identify composite fiber winding angles of the layers directing element of the coordinate system is provided in accordance. As a result of the analysis, analytical, numerical and experimental burst pressure values were compared. Also, as a result of the analytical and numerical analysis, in the layers of composite pipes, strains and stresses on the fiber direction and on the perpendicular direction to the fiber direction were compared. According to the results obtained, it was observed that the analytical, numerical and experimental results were compatible with each other for different winding angles.
  • Cherevatsky S., Cherevatsky A., Dayan H. Stepanov A., New Design of Composite/Metal Gas Storage Vessels and Propellant Tanks, AIAA 2004- 3508.
  • Cz´el G., T. Czig´any, A Study of Water Absorption and Mechanical Properties of Glass Fiber/Polyester Composite Pipes: Effects of Specimen Geometry and Preparation, Journal of Composite Materials 42 (2008) 2815–27.
  • Djehiche B., Eddahbi M., Sun X. K., Du S.Y. ve Wang G. D., Bursting Problem of Filament Wound Composite Pressure Vessels, The International Journal of Pressure Vessels and Piping, Cilt: 76, No:1, Sayfa: 55-59 (5) 1999.
  • DNVGL-RP-F119, Recommended Practice for Thermoplastic Composite Pipes, Technical Report, DNV GL, 2015.
  • Ever J. Barbero, Introduction to Composite Materials Design, Taylor & Francis, Inc. 1998.
  • Jones R.M., Mechanics of Composite Materials. McGRAW-Hill, Co.; 1975.
  • Lees J. M., Behaviour of GFRP Adhesive Pipe Joints Subjected to Pressure and Axial Loadings, Composites: Part A 37 (2006) 1171–9.
  • Mark E. Tuttle, “Structural Analysis of Polymeric Composite Materials”, MarcelDekker, Inc. 2004
  • Parnas L., Katirci N., Design of Fiber-Reinforced Composite Pressure Vessels Under Various Loading Conditions, Composite Structures, 58, 1, Sayfa: 83-95, 2002.
  • Rafiee R., Mazhari B., Simulation of Thelong-Termhydrostatic Tests on Glass Fiber Reinforced Plastic Pipes, Composite Structures 136 (2016) 56–63.
  • Robert M. Jones, Mechanics of Composite Materials, Taylor and Francis, Inc. 1998
  • Ronald F. Gibson, “Principles of Composite Material Mechanics” McGraw-Hill, Inc., New York, 1994.
  • Sayman O., Analysis of Multi-Layered Composite Cylinders Under Hygrothermal Loading, Composites: Part A, 36, 923-33, 2005.
  • Tam W. H., Griffin P. S., Jackson A. C., Design and Manufacture of a Composite Over Wrapped Pressurant Tank Assembly, AIAA 2002-4349.
  • Tam W. H., lan A. Ballinger, J. Kuo, W. D. Lay, S. F. Mc Cleskey, Morales P., Taylor Z. R., Epstein S. J., Design and Manufacture of a Composite Over wrapped Xenon Conical Pressure Vessel, AIAA 96-2752.
  • Tamer A. S., Design of Oil and Gas Composite Pipes for Energy Production, Energy Procedia, Volume 162, April 2019, Pages 146_155.
  • Wr´obel G., Szymiczek M., Kaczmarczyk J., Influence of the Structure and Number of Reinforcement Layers on The Stress State in The Shells of Tanks and Pressure Pipes, Mechanics of Composite Materials 53 (2017) 165–78.
Primary Language tr
Subjects Engineering, Mechanical
Journal Section Articles
Authors

Author: Barış KALAYCIOĞLU
Institution: KIRIKKALE ÜNİVERSİTESİ
Country: Turkey


Author: Hakan ARSLAN
Institution: KIRIKKALE ÜNİVERSİTESİ
Country: Turkey


Author: M. Burakhan AKGÜN
Institution: MAKİNA VE KİMYA ENDÜSTRİSİ KURUMU GENEL MÜDÜRLÜĞÜ
Country: Turkey


Dates

Publication Date : June 30, 2020

APA Kalaycıoğlu, B , Arslan, H , Akgün, M . (2020). Simetrik ve Simetrik Olmayan Katman Düzenlerine Sahip Kompozit Sargılı Boruların Tasarımı . International Journal of Engineering Research and Development , 12 (2) , 648-663 . DOI: 10.29137/umagd.712467