Year 2021, Volume 13 , Issue 1, Pages 74 - 86 2021-01-18

Esnek Robotların Tasarım, Kontrol ve İmalat Çalışmaları
Design, Control and Manufacturing Studies of Soft Robots

Seda YETKİN [1] , Gonca OZMEN KOCA [2]


Son dönemlerde teknolojinin gelişimine paralel olarak robotik sistemlerle ilgili çalışmalar hız kazanmıştır. Bu robotik sistemlerin amacı insan yaşamını kolaylaştırmak olduğu için sistemlerin ilham kaynağının çoğunu tabiatta yaşamını sürdüren hayvanlar ve insanların günlük hareketleri oluşturur. Bu çalışmada, giderek önem kazanan ve robotiğin yeni bir alanı olan esnek robotların tasarımı, imalatı ve araştırma faaliyetleri üzerine son yıllarda yapılan çalışmalar incelenerek bir derleme yapılmıştır. İncelemeler sonucunda esnek robotlar; sürünerek hareket edebilen, yüzebilen, rehabilitasyon amaçlı kullanılan ve tutucu olarak kullanılan esnek robotlar olarak sınıflandırılmıştır. Bu derleme makalesinde esnek robotlarda çeşitli yenilikçi teknikler ve çeşitli kontrol sistemleri, güç aktarım çeşitliliği ve üretimi esnasında gerekli olan malzeme özellikleri anlatılmaktadır. Ek olarak, çok çeşitli esnek robotlar aşağıdaki alt kategorilere göre karakterize edilmiştir; kullanılan donanım, kontrol edinme şekilleri ve kontrol sistemleri.
Lately, studies on robotic systems have gained speed in parallel with the development of technology. Since the purpose of these robotic systems is to facilitate human life, most of the systems' inspiration is the daily movements of animals and humans that live in nature. In this study, a review is made by examining the recent studies on the design, manufacture and research activities of soft robots, which are becoming increasingly important and a new area of robotics. Soft robots as a result of the studies; They are classified as soft robots that can move by crawling, swim, are used for rehabilitation purposes and are used as grippers. In this review article, various innovative techniques and various control systems, power transmission diversity and material properties required during production are explained in soft robots. In addition, a wide variety of soft robots are characterized by the following subcategories; hardware used, methods of control and control systems.
  • Ay, M., Korkmaz, D., Ozmen, K. G., Bal, C., Akpolat, Z. H. & Bingol, M. C., (2018). Mechatronic Design and Manufacturing of the Intelligent Robotic Fish for Bio-Inspired Swimming Modes, Electronics, 7, 118.
  • Ay, M., Ozmen, K. G., Yetkin, S., Bal, C. & Akpolat, Z. H. (2017). Farklı Kuyruk Modellerine Sahip Bir Robot Balığın FSI Analizi, e-Journal of New World Sciences Academy, 12(1), 78-89.
  • Bartlett, N. W., Lyau, V., Raiford, W. A., Holland, D., Gafford, J. B., Ellis, T. D. & Walsh, C. (2015). A Soft Robotic Orthosis for Wrist Rehabilitation, The Design of Medical Devices, 9, 1-3.
  • Bicakci, S. (2012). Sanal Elemanlar Yardımı İle Üst Seviye Robot Kontrol Sistemi Tasarımı, Doktora Tezi, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü, Balıkesir, 31-39.
  • Caoa, Y., Liub, Y., Chena, Y., Zhua, L., Yana, Y. & Chenc, X. (2016). A Novel Slithering Locomotion Mechanism For A Snake Like Soft Robot, Journal of the Mechanics and Physics of Solids, 99, 304–320.
  • Cengiz M.S., Mamıs M.S. (2015). Geçmişten Günümüze Stirling Motorlar için Literatür Çalışması. International Journal of Scientific and Technological Research, 1 (6), 10-19
  • Cengiz M.S., Mamıs M.S, & Yurcı Y. (2018). Provıdıng Electrıcal Power Increase By Stımulatıng temperature Dıfference at Low Temperatures in Stırlıng Motors. Sigma Journal of Engineering and Natural Sciences, 36(1), 87-97
  • Cengiz M.S., Mamıs M.S, (2016). Analysıs Of Electrıcal Effıcıency In Stırlıng Engıne For Temperature Increase. International Workshop on SpecialTopics on Polymeric Composites, FEBRUARY 24-26, 2016, pp. 68-73.
  • Chan, Y. H., Tse, Z. & Ren, H. (2017). Design Evolution and Pilot Study for a Kirigami-inspired Flexible and Soft Anthropomorphic Robotic Hand, International Conference on Advanced Robotics, China, 432 - 437.
  • Deimel, R. & Brock, O. (2016). A novel type of compliant and under actuated robotic hand for dexterous grasping, The International Journal of Robotics Research, 35(1–3), 161–185.
  • Donatelli, C. N., Serlin, Z. T., Jones, E. P., Scibelli1, A. E., Cohen, A., Musca, J. M., Levy, S. R., Buckingham, D., White, R. & Trimmer, B. A. (2017). Soft Foam Robot with Caterpillar-Inspired Gait Regimes for Terrestrial Locomotion, International Conference on Intelligent Robots and Systems, IEEE, Canada, 476 - 481.
  • Glick, P., Suresh, S. A., Ruffatto, D., Cutkosky, M., Tolley, M. T. & Parness, A. (2018). A Soft Robotic Gripper With Gecko-Inspired Adhesive, IEEE Robotıcs And Automatıon Letters, 3, 903 - 910.
  • Guo, J., Sun, Y., Liang, X., Low, J. H., Wong, Y. R., Tay, V. S. C. & Yeow, C. H. (2017). Design and fabrication of a pneumatic soft robotic gripper for delicate surgical manipulation, International Conference on Mechatronics and Automation, IEEE, Japan, 1069-1074.
  • Haimovici, M., Santos, R. A., & Fischer, L. G. (2009). Class Cephalopoda. In: Rios, E. de C. 2009. Compendium of Brazilian Sea Shells. Rio Grande, RS: Evangraf, 610-649.
  • Homberg, B. S., Katzschmann, R. K., Dogar, M. R. & Rus, D., (2015). Haptic Identification of Objects using a Modular Soft Robotic Gripper, International Conference on Intelligent Robots and Systems (IROS), IEEE, 1698-1705.
  • Ilievski, F., Mazzeo, A. D., Shepherd, R. F., Chen, X. & Whitesides, G. M. (2011). Soft Robotics for Chemists, Angew. Chem. Int. Ed., 50, 1890 –1895.
  • Katzschmann, R. K., Marchese, A. D. & Rus, D. (2016). Hydraulic Autonomous Soft Robotic Fish for 3D Swimming”, International Symposium on Experimental Robotics, Essaouira, 1-15.
  • Khin, P. M., Yap, H. K., Ang, M. H. & Yeow, C. H. (2017). Fabric-based Actuator Modules for Building Soft Pneumatic Structures with High Payload-to-Weight Ratio, International Conference on Intelligent Robots and Systems, Canada, 2744 - 2750.
  • Kim, S., Laschi, C. & Trimmer, B.(2013). Soft robotics: a bioinspired evolution in robotics, Trends Biotechnol, 31(5), 287–294.
  • Koca, O. G., Bal, C., Korkmaz, D., Bingol, M. C., Ay, M., Akpolat, Z. H. & Yetkin, S. (2018). Three-Dimensional Modeling of a Robotic Fish Based on Real Carp Locomotion, Appl. Sci., 8, 180.
  • Koca, Ö., G., (2010). Dört kol mekanizmalı mekatronik bir sistemin akıllı yöntemlerle kontrolü, Doktora Tezi, Fırat Üniversitesi Fen Bilimleri Enstitüsü, Elazığ, 24-32.
  • Lee, C., Kim, M., Kim, Y. J., Hong, N., Ryu, S., Kim, H. J. & Kim, S. (2017). Soft Robot Review, International Journal of Control, Automation and Systems, 15(1), 3-15.
  • Luo, M., Pan, Y., Skorina, E. H., Tao, W., Chen, F., Ozel S. & Onal, C. D. (2015). Slithering Towards Autonomy: A Self-Contained Soft Robotic Snake Platform With Integrated Curvature Sensing, Bioinspiration & Biomimetic, 10 055001.
  • Low, J. H., Lee, W. W., Khin, P. M., Thakor, N. V., Kukreja, S. L., Ren, H. L. & Yeow, C. H. (2017). Hybrid Tele-Manipulation System Using a Sensorized 3-D-Printed Soft Robotic Gripper and a Soft Fabric-Based Haptic Glove, IEEE Robotıcs and Automatıon Letters, 2, 880 –887.
  • Marchese, D. A., Onal, D. A. & Rus, D. (2014). Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators, Soft Robotics, 1, 75–87.
  • Polygerinos, P., Galloway, K. C., Sanan, S., Herman, W.& Walsh, C. J. (2015). EMG Controlled Soft Robotic Glove For Assistance During Activities of Daily Living, International Conference on Rehabilitation Robotics (ICORR), IEEE, Singapore, 55–60.
  • Polygerinos, P., Wang, Z., Gallowaya, K. C., Wood, R. J. & Walsha, C. J. (2015). Soft Robotic Glove For Combined Assistance and At-Home Rehabilitation, Robotics and Autonomous Systems, 73, 135–143.
  • Rus, Daniela & Michael T. Tolley. (2015). Design, Fabrication and Control of Soft Robots, Nature international journal of science, 521. 467–475.
  • Shintake, J., Cacucciolo, V., Floreano, D. & Shea, H. (2018). Soft Robotic Grippers, Advanced Materials, 30, 1707035(1-33).
  • Şen, H., (2006). Ahtapot (Octopus vulgaris Cuvier, 1797) Yetiştiriciliği, E.Ü. Su Ürünleri Dergisi, 23, 207–213.
  • Temel, S., Yağlı, S., & Gören, S. (2013). P, PD, PI, PID Controllers, Report, Mıddle East Technıcal Unıversıty Electrıcal and Electronıcs Engıneerıng Department, 1 Eylül 2018.
  • Terryn, S., Brancart, J., Lefeber, D., Assche, G. V. & Vanderborght, B. (2017). Self-healing soft pneumatic robots, Scıence Robotıcs, 2(9), eaan4268.
  • Tomita, T., Tanaka, T. & Nakamura, T. (2015). Development of a peristaltic crawling robot for long-distance sewer pipe inspection with consideration of complex pipe line, International Conference on Intelligent Robots and Systems (IROS), IEEE, Germany, 2742-2747.
  • URL-1,Yılmaz. G. L., Halkalı Solucan Regenwurm Oligochaeta, http://www.schule-mehrsprachig.at/uploads/tx_inmemttm/Halkal%C4%B1.pdf, 6 Şubat 2018.
  • URL-2,Bıyologlar Halkalı Solucanlar, http://biyologlar.com/halkali-solucanlar, 6 Şubat 2018.
  • URL-3,Hidrostatik Hareket Nedir?, https://www.nedir.com/hidrostatik-iskelet, 8 Şubat 2018.
  • URL-4,Sklar, J., Meet the World’s First Completely Soft Robot https://www.technologyreview.com/s/603046/meet-the-worlds-first-ompletely-soft-robot/, 26 Mart 2018.
  • URL-5,Hill, J., 2016. Robot Octopus Points the Way to Soft Robotics With Eight Wiggly Arms, https://spectrum.ieee.org/robotics/robotics-hardware/robot-octopus-points-the-way-to-soft-robotics-with-eight-wiggly-arms, 17 Ağustos 2018.
  • URL-6,Octopus-Inspired Robots Can Grasp, Crawl, and Swim. https://www.youtube.com/watch?v=L7FEJJsvHRQ, 17 Agustos 2018.
  • URL-7,Soft robotic glove puts control in the grasp of hand-impaired patients, https://wyss.harvard.edu/soft-robotic-glove-puts-control-in-the-grasp-of-hand-impaired-patients/, 17 Agustos 2018.
  • URL-8,A Modular Soft Robotic Gripper, https://www.youtube.com/watch?v=Y5kZO8SSxVw, 1 Eylül 2018.
  • URL-9,Gören, A. Kontrol Sistemleri, http://kisi.deu.edu.tr/aytac.goren/MAK3026/h5.pdf, 1 Eylül 2018.
  • URL-10,Sklar, J., Meet the World’s First Completely Soft Robot https://www.technologyreview.com/s/603046/meet-the-worlds-first-completely-soft-robot/ 26 Mart 2018.
  • URL-11,Evcin, A., Polimer malzemeler, http://blog.aku.edu.tr/evcin/files/2017/05/10-polimer-uygulamalar%C4%B1-polimer-borular.pdf, 28 Nisan 2018.
  • URL-12,Fiber-Reinforced Actuators, https://softroboticstoolkit.com/book/fiber-reinforced-bending-actuators, 28 Nisan 2018.
  • URL-13,Technical data sheet for ELASTOSIL® M 4601 A/B, https://www.amcsupplies.com.au/manuals/M4601-TDS.pdf, 28 Ağustos 2018.
  • URL-14,Dragon Skin Series Addition Cure Silicone Rubber Compounds, https://www.smooth-on.com/tb/files/DRAGON_SKIN_SERIES_TB.pdf, 28 Ağustos 2018.
  • URL-15,Ecoflex Series Super-Soft, Addition Cure Silicone Rubbers, https://www.smooth-on.com/tb/files/ECOFLEX_SERIES_TB.pdf, 28 Ağustos 2018.
  • URL-16,Cam Elyafı (Fiberglas), http://www.fibercamelyaf.com/cam%20elyaf%20urunler.html, 28 Ağustos 2018.
  • URL-17,Tyvek solid, http://www.dupont.com.tr/urunler-ve-hizmetler/construction-materials/tyvek-building-envelope/brands/tyvek-breather-membrane/products/tyvek-solid.html, 2 Eylül 2018.
  • URL-18,Kevlar Elyafı, http://www.dupont.com.tr/urunler-ve-hizmetler/elyaflar-kumaslar-ve-dokunmamis-malzemeler/iplikler/brands/kevlar/products/dupont-kevlar-fiber.html, 1 Eylül 2018.
  • Wang, H., Totaro, M. & Beccai, L. (2018). Toward Perceptive Soft Robots: Progress and Challenges, Advanced Materials, 1800541 (1-17).
  • Yap, H. K., Ang, B. W. K., Lim, J. H., Goh, J. C. H. & Yeow, C. H. (2016). A Fabric-Regulated Soft Robotic Glove with User Intent Detection using EMG and RFID for Hand Assistive Application, International Conference on Robotics and Automation, IEEE, Sweden, 3537-3542.
  • Yap, H. K., Khin. P. M., Koh. T. Z., Sun, Y., Liang, X., Lim, J. H. & Yeow, C. H. (2017). A Fully Fabric-Based Bidirectional Soft Robotic Glove for Assistance and Rehabilitation of Hand Impaired Patients, IEEE Robotıcs and Automatıon Letters, 2, 1383 - 1390.
  • Yetkin, S. (2016). Application of Two-Dimensional Path Planning Algorithms For The Robot Fish, Yüksek Lisans Tezi, Fırat Üniversitesi Fen Bilimleri Enstitüsü, Elazığ,1-8.
  • Yetkin, S., Ozmen, K. G., Ay, M., Akpolat, Z. H. & Bal, C. (2017). FSI Analysisof Carangiform Three Dimensional Multi-Link Biomimetic Robotic Fish, Afyon Kocatepe University Journal of Sciences and Engineering, 17(2), 825-833.
  • Yi, J., Chen, X. & Wang, Z. (2018). A Three-Dimensional-Printed Soft Robotic Glove With Enhanced Ergonomics and Force Capability, IEEE Robotics and Automation Letters, 3. 242–248.
  • Yüzgeç, U., Büyüktepe, H. E. & Karakuzu, C. (2016). Kablosuz Eldiven Sistemi ile Kontrol Edilen Robot Kol Tasarımı, Türkiye bilişim vakfı bilgisayar bilimleri ve mühendisliği dergisi, 9. 35–42.
  • Zhang, H., Wang, M. Y., Chen, F., Wang, Y., Kumar, A. S. & Fuh, J. Y. H. (2017). Design and development of a soft gripper with topology optimization, IEEE/RSJ International Conference on Intelligent Robots and Systems, Canada, 6239 - 6244.
  • Zhu, M., Wang, Z., Hirai, S. & Kawamura, S. (2017). Design and Fabrication of a Soft-bodied Gripper with Integrated Curvature Sensors, 24th International Conference on Mechatronics and Machine Vision in Practice, New Zealand.
Primary Language tr
Subjects Engineering
Journal Section Articles
Authors

Orcid: 0000-0001-9685-1376
Author: Seda YETKİN (Primary Author)
Institution: BITLIS EREN UNIVERSITY
Country: Turkey


Orcid: 0000-0003-1750-8479
Author: Gonca OZMEN KOCA
Institution: FIRAT UNIVERSITY
Country: Turkey


Dates

Publication Date : January 18, 2021

APA Yetkin, S , Ozmen Koca, G . (2021). Esnek Robotların Tasarım, Kontrol ve İmalat Çalışmaları . International Journal of Engineering Research and Development , 13 (1) , 74-86 . DOI: 10.29137/umagd.706041