Research Article
BibTex RIS Cite

Experimental Investigation of The Effects of Mechanical Anchor Number and Layout Shape on Bond Stress-Slip Displacement Behavior at Timber Joints

Year 2021, Volume: 13 Issue: 1, 1 - 12, 18.01.2021
https://doi.org/10.29137/umagd.805399

Abstract

The general load-displacement and shear stress-shear displacement behavior of the joining area combined with adhesive and mechanical connectivity in wooden structures and structural elements are highly effective on the capacity of the structural system and collapse mechanisms. The behavior of the wood joining area is an important subject that needs to be examined. Also, it exhibits different shear stress-shear displacement behaviors that vary greatly according to the mechanical properties, structure, and type of the material. The comprehensive experimental study examining the general load-displacement behavior, stress distributions and shear stress-shear displacement behaviors in the connection area which wood structural elements are combined with adhesive or adhesive and mechanical anchors have not been found in the literature. Therefore, an experimental study was planned. In this study, the general load-displacement behavior of the timber connection regions which are connected by adhesive and mechanical anchors together with adhesive, with varying length of 180, 240 and 350 mm are investigated experimentally. Besides, the effect of changing in the number and location of mechanic anchors used in the connection area on the general load-displacement and shear stress-shear displacement behavior was also investigated.

References

  • Anshari, B., Guan, Z.W., Wangc, Q.Y. (2017). Modelling of Glulam beams pre-stressed by compressed wood, Composite Structures 165 (2017) 160–170.
  • Anshari, B, Guan, Z.W., Kitamori, A., Jung, K., Komatsu, K., (2012). Structural behaviour of glued laminated timber beams pre-stressed by compressed wood. Constr Build Mater; 29:24–32.
  • Anıl, Ö., Durucan, C., Wali Din, S., (2016). Experimental Study on the Stress Distribution at the Interface Between CFRP and Three Different Types of Masonry Units, Composites Part B: engineering, Vol. 92, 63-73.
  • Dietsch, P., Tannert, T. (2015).Assessing the integrity of glued-laminated timber elements, Construction and Building Materials 101: 1259–1270.
  • Dönmez, T. Ü., Türer, A., Anil, Ö., Erdem, R. T. (2020). Experimental and numerical investigation of timber formwork beam under different loading type, Mechanics Based Design of Structures and Machines, DOI: 10.1080/15397734.2020.1749071.
  • Fossetti, M., Minafò, G., Papia, M., (2015). Flexural behaviour of glulam timber beams reinforced with FRP cords, Construction and Building Materials 95: 54–64.
  • Ghoroubi̇, R., Merci̇mek, Ö., Anıl, Ö., (2020). Açılı CFRP Ankrajlı Şeritler ile Beton Yüzey Arasındaki Gerilme-Deformasyon Davranışı için Yeni Bir Model Önerisi. International Journal of Engineering Research and Development, 12 (2) , 380-386. DOI: 10.29137/umagd.697870.
  • Ghoroubi, R., Mercimek, Ö., Özdemir, A., Anil, Ö., (2020). Experimental investigation of damaged square short RC columns with low slenderness retrofitted by CFRP strips under axial load. Structures , vol.28, 170-180.
  • Haiman, M., Pavković, K., Baljkas, B. (2010). Application of Glulam Beam Girders With External Pre-Stressing, WTCE, World Conference on Timber Engineering.
  • Izzi, M., Casagrande, D., Bezzi, S., Pasca, D., Follesa, M., Tomasi, R., (2018). Seismic behaviour of Cross-Laminated Timber structures: A state-of-the-art review, Engineering Structures 170:42–52.
  • Lu, X., Teng, J., Ye, L., & Jiang, J. (2005). Bond–slip models for FRP sheets/plates bonded to concrete. EngineeringStructures, 27, 920–937.
  • Mehra, S., O’Ceallaigh, C., Hamid – Lakzaeian F., Guan, Z., Sotayo, A., Harte, A.M., (2018). Evaluation of The Structural Behaviour of Beam-Beam Connection Systems Using Compressed Wood Dowels And Plates, WCTE 2018, World Conference on Timber Engineering, April, 20-23 2018, Seoul, Republic of Korea.
  • Mercimek, Ö., Ghoroubi, R., & Anıl, Ö., (2019). Behavior of RC Square Column Strengthening with CFRP Strips Subjected to Low Velocity Lateral Impact Loading. Seismic Isolation, Structural Health Monitoring, and Performance Based Seismic Design in Earthquake Engineering (pp.329-342), Berlin: Springer, London/Berlin.
  • Mercimek, Ö., Ghoroubi, R., Özdemir, A., Anıl, Ö., (2020). Strengthening of Columns with Different Innovative Composite Materials for RC Buildings without Sufficient Earthquake Resistance . International Conference on Advanced Materials Science & Engineering and High Tech Devices Applications; Exhibition (ICMATSE 2020), October 2-4, 2020, Gazi University, Ankara, TURKEY (pp.214-215). Ankara, Turkey.
  • Mertoğlu, Ç., Anıl, Ö., Durucan, C, (2016). Bond Slip Model and Strain Distribution of Anchoraged CFRP Strips, Construction and Building Materials, Vol. 123, 553-564.
  • Raftery, G.M., Rodd, P.D. (2015). FRP reinforcement of low-grade glulam timber bonded with wood adhesive, Construction and Building Materials 91: 116–125.
  • Raftery, G.M., Harte, A.M. (2013). Nonlinear numerical modelling of FRP reinforced glued laminated timber, Composites: Part B 52: 40–50.
  • Sakin, S., Anıl, Ö., Ghoroubi, R., Mercimek, Ö., (2019). Modelling bond between concrete and bonded and anchored carbon-fibre polymer strips. Proceedings of The Institution of Civil Engineers-Structures and Buildings , vol.172, 437-450.
  • Sena-Cruz, J., Jorge, M., Branco, J. M., Cunha, V.M.C.F. (2013).Bond between glulam and NSM CFRP laminates. Construction and Building Materials 40: 260–269.
  • Schiere, M., Franke, S., Franke, B., (2018). Investigation and analysis of press glued connections for timber structures, Research Report No: K.007404.77FE-V1, Bern University of Applied Sciences, Institute for Timber Constructions, Structures and Architecture, COST Project, European Cooperation in Science and Technology.
  • Tran, V.D., Oudjene, M., Méausoone, P.J. (2015).Experimental and numerical analyses of the structural response of adhesively reconstituted beech timber beams, Composite Structures 119: 206–217.
  • Weidong, L., Ling, Z., Geng, Q., Liu, W., Yang, H., Yue, K. (2015). Study on flexural behaviour of glulam beams reinforced by Near Surface Mounted (NSM) CFRP laminates, Construction and Building Materials 91: 23–31.
  • Yang, H., Liu, W., Ren, X. (2016a). A component method for moment-resistant glulam beam–column connections with glued-in steel rods, Engineering Structures 115: 42–54.
  • Yang, H., Ju, D., Liu, W., Lu, W., (2016b). Prestressed glulam beams reinforced with CFRP bars, Construction and Building Materials 109, 73–83.

Ahşap Bağlantı Noktalarında Mekanik Ankraj Sayısı ve Yerleşim Şeklinin Kayma Gerilmesi-Kayma Deplasmanı Davranışı Üzerindeki Etkilerinin Deneysel Olarak İncelenmesi

Year 2021, Volume: 13 Issue: 1, 1 - 12, 18.01.2021
https://doi.org/10.29137/umagd.805399

Abstract

Ahşap yapılar ve yapı elemanlarında yapıştırıcı ve mekanik bağlantı elemanları ile bir araya getirilmiş birleşim bölgerinin genel yük-deplasman davranışı, kayma gerilmesi- kayma deplasmanı davranışları, yapısal sistemin kapasitesi ve göçme mekanizmaları üzerinde son derece etkilidir. Ahşap-ahşap bağlantı bölgelerinin davranışları, malzemenin mekanik özelliklerine, yapısına ve türüne göre çok büyük oranda değişim gösteren farklı kayma gerilmesi-kayma deplasmanı davranışları sergileyen, incelenmesi gerekli olan önemli bir konudur. Ahşap yapı elemanlarının yapıştırıcı ve yapıştırıcı ile birlikte mekanik ankrajlar ile birleştirilmesi durumunda genel yük-deplasman davranışlarının, bağlantı bölgesindeki gerilme dağılımları ile kayma gerilmesi - kayma deplasmanı davranışlarının incelendiği kapsamlı bir deneysel çalışmaya literatürde rastlanmamıştır. Bu nedenle deneysel bir çalışma planlanmıştır. Bu çalışma kapsamında birbirlerine yapıştırıcı ve yapıştırıcı ile birlikte mekanik ankrajlar ile bağlanmış olan, kenetlenme uzunlukları 180, 240 ve 350 mm olarak değişim gösteren ahşap bağlantı bölgelerinin, eksenel çekme yükü etkisi altındaki genel yük deplasman davranışları deneysel olarak incelenmiştir. Ayrıca çalışma kapsamında birleşim bölgesinde kullanılan mekanik ankraj sayısı ve yerleşiminin değişim göstermesinin, genel yük-deplasman davranışı ve kayma gerilmesi-kayma deplasmanı davranışları üzerindeki etkileri de araştırılmıştır.

References

  • Anshari, B., Guan, Z.W., Wangc, Q.Y. (2017). Modelling of Glulam beams pre-stressed by compressed wood, Composite Structures 165 (2017) 160–170.
  • Anshari, B, Guan, Z.W., Kitamori, A., Jung, K., Komatsu, K., (2012). Structural behaviour of glued laminated timber beams pre-stressed by compressed wood. Constr Build Mater; 29:24–32.
  • Anıl, Ö., Durucan, C., Wali Din, S., (2016). Experimental Study on the Stress Distribution at the Interface Between CFRP and Three Different Types of Masonry Units, Composites Part B: engineering, Vol. 92, 63-73.
  • Dietsch, P., Tannert, T. (2015).Assessing the integrity of glued-laminated timber elements, Construction and Building Materials 101: 1259–1270.
  • Dönmez, T. Ü., Türer, A., Anil, Ö., Erdem, R. T. (2020). Experimental and numerical investigation of timber formwork beam under different loading type, Mechanics Based Design of Structures and Machines, DOI: 10.1080/15397734.2020.1749071.
  • Fossetti, M., Minafò, G., Papia, M., (2015). Flexural behaviour of glulam timber beams reinforced with FRP cords, Construction and Building Materials 95: 54–64.
  • Ghoroubi̇, R., Merci̇mek, Ö., Anıl, Ö., (2020). Açılı CFRP Ankrajlı Şeritler ile Beton Yüzey Arasındaki Gerilme-Deformasyon Davranışı için Yeni Bir Model Önerisi. International Journal of Engineering Research and Development, 12 (2) , 380-386. DOI: 10.29137/umagd.697870.
  • Ghoroubi, R., Mercimek, Ö., Özdemir, A., Anil, Ö., (2020). Experimental investigation of damaged square short RC columns with low slenderness retrofitted by CFRP strips under axial load. Structures , vol.28, 170-180.
  • Haiman, M., Pavković, K., Baljkas, B. (2010). Application of Glulam Beam Girders With External Pre-Stressing, WTCE, World Conference on Timber Engineering.
  • Izzi, M., Casagrande, D., Bezzi, S., Pasca, D., Follesa, M., Tomasi, R., (2018). Seismic behaviour of Cross-Laminated Timber structures: A state-of-the-art review, Engineering Structures 170:42–52.
  • Lu, X., Teng, J., Ye, L., & Jiang, J. (2005). Bond–slip models for FRP sheets/plates bonded to concrete. EngineeringStructures, 27, 920–937.
  • Mehra, S., O’Ceallaigh, C., Hamid – Lakzaeian F., Guan, Z., Sotayo, A., Harte, A.M., (2018). Evaluation of The Structural Behaviour of Beam-Beam Connection Systems Using Compressed Wood Dowels And Plates, WCTE 2018, World Conference on Timber Engineering, April, 20-23 2018, Seoul, Republic of Korea.
  • Mercimek, Ö., Ghoroubi, R., & Anıl, Ö., (2019). Behavior of RC Square Column Strengthening with CFRP Strips Subjected to Low Velocity Lateral Impact Loading. Seismic Isolation, Structural Health Monitoring, and Performance Based Seismic Design in Earthquake Engineering (pp.329-342), Berlin: Springer, London/Berlin.
  • Mercimek, Ö., Ghoroubi, R., Özdemir, A., Anıl, Ö., (2020). Strengthening of Columns with Different Innovative Composite Materials for RC Buildings without Sufficient Earthquake Resistance . International Conference on Advanced Materials Science & Engineering and High Tech Devices Applications; Exhibition (ICMATSE 2020), October 2-4, 2020, Gazi University, Ankara, TURKEY (pp.214-215). Ankara, Turkey.
  • Mertoğlu, Ç., Anıl, Ö., Durucan, C, (2016). Bond Slip Model and Strain Distribution of Anchoraged CFRP Strips, Construction and Building Materials, Vol. 123, 553-564.
  • Raftery, G.M., Rodd, P.D. (2015). FRP reinforcement of low-grade glulam timber bonded with wood adhesive, Construction and Building Materials 91: 116–125.
  • Raftery, G.M., Harte, A.M. (2013). Nonlinear numerical modelling of FRP reinforced glued laminated timber, Composites: Part B 52: 40–50.
  • Sakin, S., Anıl, Ö., Ghoroubi, R., Mercimek, Ö., (2019). Modelling bond between concrete and bonded and anchored carbon-fibre polymer strips. Proceedings of The Institution of Civil Engineers-Structures and Buildings , vol.172, 437-450.
  • Sena-Cruz, J., Jorge, M., Branco, J. M., Cunha, V.M.C.F. (2013).Bond between glulam and NSM CFRP laminates. Construction and Building Materials 40: 260–269.
  • Schiere, M., Franke, S., Franke, B., (2018). Investigation and analysis of press glued connections for timber structures, Research Report No: K.007404.77FE-V1, Bern University of Applied Sciences, Institute for Timber Constructions, Structures and Architecture, COST Project, European Cooperation in Science and Technology.
  • Tran, V.D., Oudjene, M., Méausoone, P.J. (2015).Experimental and numerical analyses of the structural response of adhesively reconstituted beech timber beams, Composite Structures 119: 206–217.
  • Weidong, L., Ling, Z., Geng, Q., Liu, W., Yang, H., Yue, K. (2015). Study on flexural behaviour of glulam beams reinforced by Near Surface Mounted (NSM) CFRP laminates, Construction and Building Materials 91: 23–31.
  • Yang, H., Liu, W., Ren, X. (2016a). A component method for moment-resistant glulam beam–column connections with glued-in steel rods, Engineering Structures 115: 42–54.
  • Yang, H., Ju, D., Liu, W., Lu, W., (2016b). Prestressed glulam beams reinforced with CFRP bars, Construction and Building Materials 109, 73–83.
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Articles
Authors

Ayşegül Özden Acehan 0000-0002-2801-2551

Ömer Mercimek 0000-0002-5367-6077

Rahim Ghoroubi 0000-0001-6895-4757

Ozgur Anıl 0000-0002-1939-0366

Publication Date January 18, 2021
Submission Date May 26, 2020
Published in Issue Year 2021 Volume: 13 Issue: 1

Cite

APA Özden Acehan, A., Mercimek, Ö., Ghoroubi, R., Anıl, O. (2021). Ahşap Bağlantı Noktalarında Mekanik Ankraj Sayısı ve Yerleşim Şeklinin Kayma Gerilmesi-Kayma Deplasmanı Davranışı Üzerindeki Etkilerinin Deneysel Olarak İncelenmesi. International Journal of Engineering Research and Development, 13(1), 1-12. https://doi.org/10.29137/umagd.805399

All Rights Reserved. Kırıkkale University, Faculty of Engineering.