Year 2021, Volume 13 , Issue 1, Pages 288 - 295 2021-01-18

420 ve 304L Farklı Paslanmaz Çeliklerin TIG Kaynağı Sonrası Radyografik Muayenesi
Radiographic Testing of 420 and 304L Dissimilar Stainless Steels after TIG Welding

Mustafa Gökhan MURAT [1] , Aziz Barış BAŞYİĞİT [2]


SAE/AISI 304L östenitik paslanmaz çelikler oksitleyici ortamlardaki korozyon dayanımları için tercih edilirken, SAE/AISI 420 martenzitik paslanmaz çelikler genel olarak atmosferik korozyona karşı dayanım amaçlı kullanılmaktadırlar. Martenzitik paslanmaz çelikler birçok alaşımlı çeliklere yakın değerlerde yüksek mekanik dayanım değerleri sergilerken bunun yanında östenitik paslanmaz çelikler yüksek ve düşük sıcaklıklarda yüksek tokluk değeri ortaya koyarlar. Bu iki farklı alaşım grubu ekonomik koşullar ve mekanik özellik yaklaşımlarından dolayı bir yapıda bir arada kullanılabilirler. Kaynaklı bağlantıların kaynak metalleri ve ısının tesiri altındaki bölgeleri, güvenilir bir kaynaklı bağlantı elde etmek için; penetrant, ultrasonik ve radyografik muayene yöntemleri gibi tekniklerle detaylıca incelenmelidir. Bu çalışmada; 3 mm kalınlıktaki SAE/AISI 304L östenitik paslanmaz çelik levha ile 3mm kalınlıkta SAE/AISI 420 martenzitik paslanmaz çelik levha TIG (Tungsten Asal Gaz) kaynak yöntemiyle saf argon koruyucu gazı altında ER312, ER316L, ER2209 olmak üzere 3 farklı ilave tel kullanılarak birleştirilmiştir. TIG kaynak teli bileşiminin kaynak metalinde oluşabilecek kusurlara etkileri incelenmiştir. Bu amaçla, numunelerin kaynak metallerinin tamamı x- ışınları radyografik muayenesi ile test edilmiştir. ER312 ve ER2209 TIG teli ile birleştirilen numunelere kıyasla, ER 316L TIG teli ile birleştirilmiş olan numunelerin kaynak metalinde, dolgu telinin en düşük krom ve en yüksek nikel içeriğine sahip oluşu neticesinde en düşük miktarda olduğu düşünülen gevrek karbürlere bağlı olarak en düşük oranda süreksizlik tespit edilmiştir.
SAE/AISI 304L austenitic stainless steels are preferred for corrosion resistance in oxidizing medias while SAE/AISI 420 martensitic stainless steels are used generally for resistance to atmospheric corrosion environments. Martensitic stainless steels exhibit high mechanical strength values close to many alloyed steels besides austenitic stainless steels present high toughness at high and low temperatures. These two different alloys may be used in a construction for economical situations and mechanical property considerations. Weld metal and heat affected zones of weldments must be thoroughly examined for discontinuities by non-destructive tests such as penetrant, ultrasonic and radiographic methods to ensure secure weldments. In this work; 304L stainless steel plates with a thickness of 3mm are joined by TIG (Tungsten Inert Gas) welding method with 3mm 420 stainless steel plates under pure argon shielding gas by 3 different TIG welding rods of ER 312, ER316L, ER2209 types. The effects of TIG welding rod compositions on weld metal defects is investigated. For this purpose, weld metals of all samples are tested by x-ray radiographic inspection method. The fewest ratios of discontinuities are detected on samples weld metals joined by ER316L TIG welding rod because of rod having the minimum amounts of chromium and the maximum amounts of nickel and consequently having the least quantities of brittle carbides as compared to samples joined by ER312 and ER2209 TIG rods.  
  • Abbas, M; Hamdy, AS; Essam, A. (2020). The comparison of gas tungsten arc welding and flux cored arc welding effects on dual phase steel, Materials Research Express, Volume 7, Issue:3, Doi: 10.1088/2053-1591/ab7f5f.
  • ASM Handbook Committee. (1997). Non-Destructive Evaluation and Quality Control, ASM Handbook Volume 17. pp. 628-761.
  • ASM Handbook Committee. (2005). ASM Handbook Volume 2, Properties and Selection: Wrought Stainless Steels, p.1303.
  • ASTM A240/A240M. (2017). Standard Specification for Chromium and Chromium-Nickel Stainless Steel Plate, Sheet and Strip for Pressure Vessels and for General Applications; ASTM International: West Conshohocken, PA, USA.
  • AWS A5.9/A5.9M. (2017). Welding Consumables-Wire Electrodes, Strip Electrodes, Wires, and Rods for Arc Welding of Stainless and Heat Resisting Steels- Classification, American Welding Society.
  • Baldev R. et.al. (2002). Practical Non-Destructive Testing, The Materials Information Society, ASM International, Narosa Publishing House, Materials Park Ohio, USA. p.54-76.
  • Çolak, Z; Ayan, Y; Kahraman, N. (2020). Weld morphology and mechanical performance of marine structural steel welded underwater in a real marine environment, International Journal of Advanced Manufacturing Technology, Volume: 109 Issue:1-2, Doi: 10.1007/s00170-020-05679-y.
  • Garcia-Martinez, M; Gonzalez, MPV; Meije, AG; Muro, AP. (2020). Failure Analysis of a Steel Elbow Pipe from a Gas Well, Volume 20, Issue 3, Doi: 10.1007/s11668-020-00870-5, p:723-733.
  • Hou, WH; Zhang, DS; Wei, Y; Guo, J; Zhang, XL. (2020). Review on Computer Aided Weld Defect Detection from Radiography Images, Applied Sciences-Basel, Volume 10, Issue:5, Doi: 10.3390/app10051878.
  • ISO 14343. (2017). Welding consumables, Wire electrodes, strip electrodes, wires and rods for arc welding of stainless and heat resisting steels, Classification.
  • J.C. Lippold, D. Kotecki. (2005). Welding Metallurgy and Weldability of Stainless Steels, Wiley Interscience, pp. 56-57.
  • Kabasakaloglu, TS, Tugce S; Erdogan, M. (2020). Characterisation of figure-eight shaped oscillation laser welding behaviour of 5083 aluminium alloy, Science and Technology of Welding and Joining, 609-616, Volume:25 Issue:7, Doi: 10.1080/13621718.2020.1794652.
  • Kou S. (2002). Welding Metallurgy, 2nd edition,Wiley Interscience Publications, Hoboken, NJ, USA.
  • Lindner, S; Deike, R. (2020). Detection Method for Liquid Metal Embrittlement Cracks Inside the Intermediate Sheet Zone of Dissimilar Resistance Spot Welds, Steel Research International, Doi: 10.1002/srin.202000044.
  • Saravanan, T; Mahadevan, S; Mukhopadhyay, CK. (2020). An improved quality assessment of fuel pin end plug welds using digital X-ray radiography, Insight, Volume: 62 Issue: 10, , 579-583, DOI: 10.1784/insi.2020.62.10.579.
  • Tang, FD; Yu, Yanfeng. (2020). Nondestructive Testing Method for Welding Quality in Key Parts of Ocean-going Ships, Journal of Coastal Research, 91-94 Issue:10, Doi: 10.2112/JCR-SI110-022.1.
  • Tippayasam, C.; Kaewvilai, A. (2020). Steel-Reinforced Polyethylene Pipe: Extrusion Welding, Investigation, and Mechanical Testing The effects of welding methods, with and without preheat conditions, on weld quality were investigated by visual and radiographic inspections, and crystalline analysis, Volume:99, Issue:2, Doi: 10.29391/2020.99.005.
  • Yahaghi, E; Hosseini-Ashrafi ME. (2020). Comparison of the performance of three domain transform filters for radiographic contrast enhancement of welded objects, Insight, Volume: 62, Issue:6, Doi: 10.1784/insi.2020.62.6.352.
Primary Language tr
Subjects Metallurgy and Metallurgical Engineering
Journal Section Articles
Authors

Orcid: 0000-0002-5421-8131
Author: Mustafa Gökhan MURAT
Institution: Deniz Eğitim ve Öğretim Komutanlığı İstanbul
Country: Turkey


Orcid: 0000-0003-1544-3747
Author: Aziz Barış BAŞYİĞİT (Primary Author)
Institution: Kırıkkale University
Country: Turkey


Thanks Authors present their thanks to Gazi University Welding Technologies Research and Application Center staff for radiographic testing instrument supports.
Dates

Publication Date : January 18, 2021

APA Murat, M , Başyiğit, A . (2021). 420 ve 304L Farklı Paslanmaz Çeliklerin TIG Kaynağı Sonrası Radyografik Muayenesi . International Journal of Engineering Research and Development , 13 (1) , 288-295 . DOI: 10.29137/umagd.837180