Research Article
BibTex RIS Cite

Kompozit Yamalar ile Tamir Edilmiş Çatlaklı Sandviç Kirişlerin Eğilme Darbe Davranışları

Year 2021, Volume: 13 Issue: 2, 438 - 447, 18.06.2021
https://doi.org/10.29137/umagd.846692

Abstract

Bu çalışma, deneysel ve sayısal olarak kompozit yamalar ile tamir edilen çatlaklı sandviç kirişlerin eğilme darbe davranışını araştırmaktadır. Sandviç kiriş elemanları yüzey tabakaları, cam elyaf takviyeli kompozit, köpük çekirdek, PVC malzeme ve yapıştırıcı tabakalardır. Üst yüzey tabakasına çatlak oluşturularak hasar verilmiştir ve kompozit yama yapıştırılarak tamir edilmiştir. Düşük hızlı darbe davranışı, farklı yama malzemeleri, kalınlıkları ve darbe enerjileri açısından incelenmiştir. Sayısal darbe analizleri, kompozit sandviç kirişin hasar davranışını modellemek ve deneysel darbe testi sonuçlarını karşılaştırmak için yapılmıştır. PYTHON program dili ile parametrik modelleneme yapılmıştır. Sonlu elemanlar alt programı ABAQUS-VUMAT kullanılarak 3B Hashin hasar modelleri kompozit yama ve yüzey tabakalarına uygulanmıştır. Son olarak, hasarlı kirişin eğilme rijitliği yama uygulaması ile artırılmıştır. Sandviç kirişlerin hasar toleransları, temas kuvveti değişimleri, kinetik enerji varyasyonları ve darbe sonrası hasar modları dikkate alınarak farklı yama parametreleri için belirlenmiştir.

Supporting Institution

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK)

Project Number

216M519

Thanks

Yazarlar, 216M519 Nolu Proje Kapsamında Türkiye Bilimsel ve Teknolojik Araştırma Kurumu'na (TÜBİTAK) Teşekkür Eder.

References

  • Balaganesan, G. & Khan, V.C. (2016). Energy absorption of repaired composite laminates subjected to impact loading, Composites Part B, 98, 39-48.
  • Mall, S. & Conley, D.S. (2009). Modeling and validation of composite patch repair to cracked thick and thin metallic panels, Composites: Part A, 40, 1331-1339.
  • Shams, S.S. & El-Hajjar, R.F. (2013). Overlay patch repair ofscratch damage incarbon fiber/epoxylaminated composites, Composite s: Part A, 49, 148-156.
  • Albedah, A., Khan, S.M.A., Benyahia, F. & Bouiadjra, B.B. (2016). Effect of load amplitude change on the fatigue life of cracked Al plate repaired with composite patch, International Journal of Fatigue, 88, 1-9.
  • Cheng, P., Gong, X.J., Aivazzadeh, S. & Xiao, X. (2014). Experimental observation of tensile behavior of patch repaired composites, Polymer Testing, 34, 146-154.
  • Constantin, N., Sandu, M., & Sorohan, S. (2013). Restoration of the mechanical performance of damaged Al panels using bonded composite repair patches, International Journal of Adhesion & Adhesives, 42, 69-76.
  • Errouane, H., Sereir, Z., & Chateauneuf, A. (2014). Numerical model for optimal design of composite patch repair of cracked aluminum plates under tension, International Journal of Adhesion & Adhesives, 49, 64-72.
  • Benyahia, F., Aminallah, L., Albedah, A., Bouiadjra, B.B. & Achour, T. (2015). Experimental and numerical analysis of bonded composite patch repair in aluminum alloy 7075 T6, Materials and Design, 73, 67-73.
  • Sabelkin, V., Mall, S., Hansen, M.A., Vandawaker, R.M. & Derriso, M. (2007). Investigation into cracked aluminum plate repaired with bonded composite patch, Composite Structures, 79, 55-66.
  • Khalili, S.M.R., Ghadjar, R., Sadeghinia, M. & Mittal, R.K. (2009). An experimental study on the Charpy impact response of cracked aluminum plates repaired with GFRP or CFRP composite patches, Composite Structures, 89, 270-274.
  • Kwon, Y.W. & Hall, B.L. (2015). Analyses of cracks in thick stiffened plates repaired with single-sided composite patch, Composite Structures, 119, 727-737.
  • Abaqus/Explicit (version 6.14), User’s manual, finite element software. available from http://www.simulia. com.
  • Carneiro, M.A.S. & Campilho, R.D.S.G. (2017). Analysis of adhesively-bonded T-joints by experimentation and cohesive zone models, Journal of Adhesion Science and Technology, 31, 1998–2014.
  • Zhou, J., Hassan, M.Z., Guan, Z. & Cantwell, W.J. (2012). The low velocity impact response of foam-based sandwich panels, Composites Science and Technology, 72(14), 1781 – 1790.
  • Hashin, Z. (1980). Failure criteria for unidirectional fiber composites. Journal of Applied Mechanics, 47(2), 329–334.
  • Singh, H., Namala, K. K. & Mahajan, P. (2015) .A damage evolution study of E-glass/epoxy composite under low velocity impact, Composites Part B, 76, 235-248.

Flexural impact Response of Cracked Sandwich Beams Repaired by Composite Patches

Year 2021, Volume: 13 Issue: 2, 438 - 447, 18.06.2021
https://doi.org/10.29137/umagd.846692

Abstract

This study focused on the flexural impact response of cracked sandwich beams repaired by composite patches experimentally and numerically. The sandwich beam members are face-sheets, glass-fiber reinforced plastic (GFRP) composite material, foam core, PVC material, and adhesive layer. The cracked was created on the surface of the top face-sheet to damage it and it was repaired by bonding external composite patch. Low-velocity impact response was investigated in terms of different patch materials, thicknesses, and impact energies. The impact analysis was performed to model the damage behavior of the composite sandwich beam and to compare experimental impact test results. 3D Hashin damage models were used to obtain damage characteristic of composite laminates with patch application using the explicit finite element subroutine ABAQUS-VUMAT with scripting language via PYTHON programme language. Finally, the bending stiffness of the cracked beam was increased using the patch application. Damage tolerances of sandwich beams were determined for different patch parameters considering contact force variations, kinetic energy variations and after-impact damage modes.

Project Number

216M519

References

  • Balaganesan, G. & Khan, V.C. (2016). Energy absorption of repaired composite laminates subjected to impact loading, Composites Part B, 98, 39-48.
  • Mall, S. & Conley, D.S. (2009). Modeling and validation of composite patch repair to cracked thick and thin metallic panels, Composites: Part A, 40, 1331-1339.
  • Shams, S.S. & El-Hajjar, R.F. (2013). Overlay patch repair ofscratch damage incarbon fiber/epoxylaminated composites, Composite s: Part A, 49, 148-156.
  • Albedah, A., Khan, S.M.A., Benyahia, F. & Bouiadjra, B.B. (2016). Effect of load amplitude change on the fatigue life of cracked Al plate repaired with composite patch, International Journal of Fatigue, 88, 1-9.
  • Cheng, P., Gong, X.J., Aivazzadeh, S. & Xiao, X. (2014). Experimental observation of tensile behavior of patch repaired composites, Polymer Testing, 34, 146-154.
  • Constantin, N., Sandu, M., & Sorohan, S. (2013). Restoration of the mechanical performance of damaged Al panels using bonded composite repair patches, International Journal of Adhesion & Adhesives, 42, 69-76.
  • Errouane, H., Sereir, Z., & Chateauneuf, A. (2014). Numerical model for optimal design of composite patch repair of cracked aluminum plates under tension, International Journal of Adhesion & Adhesives, 49, 64-72.
  • Benyahia, F., Aminallah, L., Albedah, A., Bouiadjra, B.B. & Achour, T. (2015). Experimental and numerical analysis of bonded composite patch repair in aluminum alloy 7075 T6, Materials and Design, 73, 67-73.
  • Sabelkin, V., Mall, S., Hansen, M.A., Vandawaker, R.M. & Derriso, M. (2007). Investigation into cracked aluminum plate repaired with bonded composite patch, Composite Structures, 79, 55-66.
  • Khalili, S.M.R., Ghadjar, R., Sadeghinia, M. & Mittal, R.K. (2009). An experimental study on the Charpy impact response of cracked aluminum plates repaired with GFRP or CFRP composite patches, Composite Structures, 89, 270-274.
  • Kwon, Y.W. & Hall, B.L. (2015). Analyses of cracks in thick stiffened plates repaired with single-sided composite patch, Composite Structures, 119, 727-737.
  • Abaqus/Explicit (version 6.14), User’s manual, finite element software. available from http://www.simulia. com.
  • Carneiro, M.A.S. & Campilho, R.D.S.G. (2017). Analysis of adhesively-bonded T-joints by experimentation and cohesive zone models, Journal of Adhesion Science and Technology, 31, 1998–2014.
  • Zhou, J., Hassan, M.Z., Guan, Z. & Cantwell, W.J. (2012). The low velocity impact response of foam-based sandwich panels, Composites Science and Technology, 72(14), 1781 – 1790.
  • Hashin, Z. (1980). Failure criteria for unidirectional fiber composites. Journal of Applied Mechanics, 47(2), 329–334.
  • Singh, H., Namala, K. K. & Mahajan, P. (2015) .A damage evolution study of E-glass/epoxy composite under low velocity impact, Composites Part B, 76, 235-248.
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Umut Caliskan 0000-0002-8043-2799

Recep Ekici 0000-0002-4420-8431

Mustafa Kemal Apalak 0000-0002-3263-5735

Project Number 216M519
Publication Date June 18, 2021
Submission Date December 25, 2020
Published in Issue Year 2021 Volume: 13 Issue: 2

Cite

APA Caliskan, U., Ekici, R., & Apalak, M. K. (2021). Kompozit Yamalar ile Tamir Edilmiş Çatlaklı Sandviç Kirişlerin Eğilme Darbe Davranışları. International Journal of Engineering Research and Development, 13(2), 438-447. https://doi.org/10.29137/umagd.846692

All Rights Reserved. Kırıkkale University, Faculty of Engineering.