Research Article
BibTex RIS Cite

Numerical Investigation of Flow and Heat Transfer Characteristics of a Heat Pipe

Year 2021, Volume: 13 Issue: 2, 600 - 611, 18.06.2021
https://doi.org/10.29137/umagd.878818

Abstract

In this study, the thermal and flow characteristics of a heat pipe, which has an important place in thermal control applications, have been investigated. Four different model geometries were created by changing the ratio of the lengths of the condenser section and the middle adiabatic section (Lc / La1) of the heat pipe. This ratio has been changed to be 0.5, 1.0, 1.25 and 2.0. For these model geometries, the heat inputs were changed between 10W and 80W, and the occupancy rate between 40% and 80%. Numerical analyzes were made through Computational Fluid Dynamics. In this context, time-dependent solutions are made with the two-phase flow approach. The temperature and velocity distributions of the flow in the heat pipe are determined. As a result, it has been observed that increasing the length of the condenser section of the model geometry has a positive effect on the thermal performance in the parameter range examined in this study. In addition, it was determined that 50% occupancy rate showed optimum thermal performance among different occupancy rates.

References

  • Baitule D. A., Pachghare P. R. (2013), Experimental analysis of closed loop pulsating heat pipe with variable filling ratio. International Journal Mechanical Engineering and Robotics Research 2, No 3
  • Clement J. and Wang X. (2011), Experimental investigation of pulsating heat pipe performance with regard to fuel cell cooling application, Applied Thermal Engineering, 50, 268-274
  • Çalışır T., Çalışkan S., Kılıç M., Başkaya Ş. (2017), Çarpan akışkan jetleri kullanarak kanatçıklı yüzeyler üzerindeki akış alanının sayısal olarak incelenmesi, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 32, 127-138
  • Fertahi S.D., Bouhal T., Agrouaz Y., Kousksou T., Rhafiki T.E., Zéraouli Y. (2018), Performance optimization of a two-phase closed thermosyphon through cfd numerical simulations, Applied Thermal Engineering, 128, 551–563
  • Gupta N.K., Barua A., Mishra S., Singh S.K., Tiwari A.K., Ghosh S. K. (2019), Numerical study of CeO2 /H2O nanofluid application on thermal performance of heat pipe, Materials Today: Proceedings, 18, 1006–1016
  • Kilic M. (2018), A numerical analysis of transpiration cooling as an air cooling mechanism, Heat Mass Transfer, 54, 3647–3662
  • Kumaer P. (2019), Numerical investigation of fluid flow and heat transfer in trapezoidal microchannel with groove structure, International Journal of Thermal Science, 136, 33–43
  • Lin Z.R., Wang S.F., Chen J.J. (2011), Experimental study on effective range of miniature oscillating heat pipes, Applied Thermal Engineering, 31(5), 880–886
  • Masip Y., Campo A., Nunez S.M. (2020), Experimental analysis of the thermal performance on electronic cooling by a combination of cross-flow and an impinging air jet, Applied Thermal Engineering, 167, 114779
  • Naik R., Varadarajan V., Pundarika G., Narasimha K. R. (2013), Experiment investigation and performance evaluation of a Closed loop PHP, Journal of Applied Fluid Mechanics, 6(2), 267-275
  • Noori S.M.A., Abadi R, Meyer J.P., Dirker J. (2018), Numerical simulation of condensation inside an inclined smooth tube, Chemcial Engineering Science, 182, 132–145
  • Pachghare P. R., Mahalle A. M. (2014), Thermo-hydrodynamics of closed looppulsating heat pipe: an experimental study. In No 3387-3394 India
  • Pouryoussef S.M., Zhang Y. (2017), Analysis of chaotic flow in a 2D multi-turn closed-loop pulsating heat pipe, Applied Thermal Engineering, 126, 1069–1076
  • Rahman M. L., Sultan R. A., Islam T., Noor M. H., Mohammad A. (2015), An experimental investigation on the effect of fin in the performance of closed loop pulsating heat pipe. In No.1216 Bangladesh
  • Saha N., Das P.K., Sharma P. (2014), Influence of process variables on the hydrody- namics and performance of a single loop pulsating heat pipe, International Journal Heat Mass Transfer, 74, 238–250
  • Wang J., Bai X. (2018), The features of clphp with partial horizontal structure, Applied Thermal Engineering, 133, 682–689
  • Wang J., Ma H., Zhu Q. (2015), Effects of the evaporator and condenser length on the performance of pulsating heat pipes, Applied Thermal Engineering, 91, 1018-1025
  • Wang J., Xie J., Liu X. (2020), Investigation of wettability on performance of pulsating heat pipe, International Journal of Heat and Mass Transfer, 150, 119354
  • Wu R., Hong T., Cheng Q., Zou H., Fan Y., Luo X. (2019), Thermal modeling and comparative analysis of jet impingement liquid cooling for high power electronics, International Journal of Thermal Science (137) 42–51
  • Xie F., Li X., Qian P., Huang Z., Liu M. (2020), Effects of geometry and multisource heat input on flow and heat transfer in single closed-loop pulsating heat pipe, Applied Thermal Engineering (168) 114856

Bir Isı Borusunun Akış ve Isı Transfer Karakteristiklerinin Sayısal Olarak İncelenmesi

Year 2021, Volume: 13 Issue: 2, 600 - 611, 18.06.2021
https://doi.org/10.29137/umagd.878818

Abstract

Bu çalışmada ısıl kontrol uygulamalarında önemli bir yere sahip olan bir ısı borusunun ısıl ve akış karakteristikleri incelenmiştir. Isı borusunun yoğuşturucu bölüm ve orta adyabatik bölüm uzunluklarının birbirine oranı (Lc/La1) sırasıyla 0,5, 1, 1,25 ve 2 olacak şekilde değiştirilerek dört farklı model geometri oluşturulmuştur. Bu model geometriler için, ısı girdileri 10W ile 80W arasında, doluluk oranı ise %40 ile %80 arasında değiştirilerek Hesaplamalı Akışkanlar Dinamiği aracılığı ile sayısal analizler yapılmıştır. Bu kapsamda, iki fazlı akış yaklaşımı ile zamana bağlı çözümler yapılmış, ısı borusu içindeki akışın sıcaklık ve hız dağılımları belirlenmiştir. Sonuç olarak bu çalışmada incelenen parametre aralığında, model geometrinin yoğuşturucu kısmının uzunluğunun artırılmasının ısıl performansı olumlu yönde etkilediği gözlemlenmiştir. Ayrıca farklı doluluk oranları arasında %50 doluluk oranının optimum ısıl performans sergilediği belirlenmiştir.

References

  • Baitule D. A., Pachghare P. R. (2013), Experimental analysis of closed loop pulsating heat pipe with variable filling ratio. International Journal Mechanical Engineering and Robotics Research 2, No 3
  • Clement J. and Wang X. (2011), Experimental investigation of pulsating heat pipe performance with regard to fuel cell cooling application, Applied Thermal Engineering, 50, 268-274
  • Çalışır T., Çalışkan S., Kılıç M., Başkaya Ş. (2017), Çarpan akışkan jetleri kullanarak kanatçıklı yüzeyler üzerindeki akış alanının sayısal olarak incelenmesi, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 32, 127-138
  • Fertahi S.D., Bouhal T., Agrouaz Y., Kousksou T., Rhafiki T.E., Zéraouli Y. (2018), Performance optimization of a two-phase closed thermosyphon through cfd numerical simulations, Applied Thermal Engineering, 128, 551–563
  • Gupta N.K., Barua A., Mishra S., Singh S.K., Tiwari A.K., Ghosh S. K. (2019), Numerical study of CeO2 /H2O nanofluid application on thermal performance of heat pipe, Materials Today: Proceedings, 18, 1006–1016
  • Kilic M. (2018), A numerical analysis of transpiration cooling as an air cooling mechanism, Heat Mass Transfer, 54, 3647–3662
  • Kumaer P. (2019), Numerical investigation of fluid flow and heat transfer in trapezoidal microchannel with groove structure, International Journal of Thermal Science, 136, 33–43
  • Lin Z.R., Wang S.F., Chen J.J. (2011), Experimental study on effective range of miniature oscillating heat pipes, Applied Thermal Engineering, 31(5), 880–886
  • Masip Y., Campo A., Nunez S.M. (2020), Experimental analysis of the thermal performance on electronic cooling by a combination of cross-flow and an impinging air jet, Applied Thermal Engineering, 167, 114779
  • Naik R., Varadarajan V., Pundarika G., Narasimha K. R. (2013), Experiment investigation and performance evaluation of a Closed loop PHP, Journal of Applied Fluid Mechanics, 6(2), 267-275
  • Noori S.M.A., Abadi R, Meyer J.P., Dirker J. (2018), Numerical simulation of condensation inside an inclined smooth tube, Chemcial Engineering Science, 182, 132–145
  • Pachghare P. R., Mahalle A. M. (2014), Thermo-hydrodynamics of closed looppulsating heat pipe: an experimental study. In No 3387-3394 India
  • Pouryoussef S.M., Zhang Y. (2017), Analysis of chaotic flow in a 2D multi-turn closed-loop pulsating heat pipe, Applied Thermal Engineering, 126, 1069–1076
  • Rahman M. L., Sultan R. A., Islam T., Noor M. H., Mohammad A. (2015), An experimental investigation on the effect of fin in the performance of closed loop pulsating heat pipe. In No.1216 Bangladesh
  • Saha N., Das P.K., Sharma P. (2014), Influence of process variables on the hydrody- namics and performance of a single loop pulsating heat pipe, International Journal Heat Mass Transfer, 74, 238–250
  • Wang J., Bai X. (2018), The features of clphp with partial horizontal structure, Applied Thermal Engineering, 133, 682–689
  • Wang J., Ma H., Zhu Q. (2015), Effects of the evaporator and condenser length on the performance of pulsating heat pipes, Applied Thermal Engineering, 91, 1018-1025
  • Wang J., Xie J., Liu X. (2020), Investigation of wettability on performance of pulsating heat pipe, International Journal of Heat and Mass Transfer, 150, 119354
  • Wu R., Hong T., Cheng Q., Zou H., Fan Y., Luo X. (2019), Thermal modeling and comparative analysis of jet impingement liquid cooling for high power electronics, International Journal of Thermal Science (137) 42–51
  • Xie F., Li X., Qian P., Huang Z., Liu M. (2020), Effects of geometry and multisource heat input on flow and heat transfer in single closed-loop pulsating heat pipe, Applied Thermal Engineering (168) 114856
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Articles
Authors

Mevlüt Emre Aslantaş 0000-0002-7290-8507

Tolga Demircan 0000-0003-4805-6428

Publication Date June 18, 2021
Submission Date February 12, 2021
Published in Issue Year 2021 Volume: 13 Issue: 2

Cite

APA Aslantaş, M. E., & Demircan, T. (2021). Bir Isı Borusunun Akış ve Isı Transfer Karakteristiklerinin Sayısal Olarak İncelenmesi. International Journal of Engineering Research and Development, 13(2), 600-611. https://doi.org/10.29137/umagd.878818

All Rights Reserved. Kırıkkale University, Faculty of Engineering.