Conference Paper
PDF Zotero Mendeley EndNote BibTex Cite

WE43 Magnezyum Alaşımlarının RF Sıçratma Yöntemi ile Tantal-Oksit Kaplanması ve Karakterizasyonu

Year 2021, Volume 13, Issue 3, 32 - 39, 31.12.2021
https://doi.org/10.29137/umagd.1035754

Abstract

Magnezyum alaşımları yüksek özgül dayanımları nedeni ile otomotiv ve havacılık sektörlerinde sıklıkla kullanılan alaşımlardır. Alaşımların aşınma ve korozyon dayanımlarını arttırmaya yönelik yoğunlaşan çeşitli çalışmalar sürdürülmektedir. Yapılan çalışma, WE43 magnezyum alaşımın tantal-oksit ile kaplanması ve karakterizasyonunu içermektedir. WE43 magnezyum alaşımına RF sıçratma yöntemi ile tantal-oksit kaplamalar uygulanmıştır. Kaplama işlemi öncesi yüzeylere uygulanan asit aşındırma işleminin etkisini gözlemleyebilmek amacıyla, H2SO4 ve HCl asit karışımları kullanılmış ve numuneler asit ile 25, 45, 65 ve 85 °C’de parlatma sonrası asit aşındırma işlemine tabi tutulmuştur. Uygulanan asit aşındırma işlemlerinin kaplanmış yüzeylere etkileri çalışma kapsamında incelenmiştir. Uygulanan işlemlerin kaplama öncesi yüzey morfolojisine, yüzey ile kaplama tabakası arasında oluşan metalürjik bağa ve kaplama sonrası yüzey özelliklerine olan etkileri taramalı elektron mikroskobu, enerji dağılım spektroskopisi, X-ışını taraması ve kesitten alınan kaplama kalınlık ölçümleri ile incelenmiştir. Çalışma sonucunda, kaplama öncesi yüzeylerde farklılıklar olduğu, çatlaklı ve aşınmış alanlar gözlemlendiği ve buna rağmen yüzeylerde çatlaksız/gözeneksiz, sürekliliği olan ve homojen kaplama tabakaları elde edildiği tespit edilmiştir. Uygulanan yüzey işlemleri yüzey kimyasında ve morfolojisinde çeşitli değişikliklere neden olmuştur. Kaplama kalınlıkları 2,52±0,02 µm olarak elde edilmiştir.

References

  • Almeida, E. (2001). Surface Treatments and Coatings for Metals. A General Overview, Surface Treatments, Surface Preparation, and the Nature of Coatings. Industrial & Engineering Chemistry Research, 40(1), 3-14.
  • Antion, C., Donnadieu, P. & Perrard, F. (2003). Hardening precipitation in a Mg–4Y–3RE alloy. Acta Materialia, 51, 5335-5348.
  • Bansal, N. P. (1993). Low Temperature Synthesis of Monolithic Transparent Ta205 Gels From Hydrolysis of Metal Alkoxide. NASA Technical Memorandum, 106246.
  • Byun, S.-H., Lim, H.-K., Cheon, K.-H., Lee, S.-M., Kim, H.-E. & Lee, J.-H. (2020). Biodegradable magnesium alloy (WE43) in bone-fixation plateand screw. Journal of Biomedical Materials Research: Part B Applied Biomaterials, 108B, 2505-2512.
  • Cao, G., Zhang, D., Zhang, W. & Zhang, W. (2016). In Vitro Corrosion Study of Friction Stir ProcessedWE43 Magnesium Alloy in a Simulated Body Fluid. Materials, 9, 542.
  • Chang, Y.-Y., Huang, H.-L., Chen, H.-J., Lai, C.-H., and Wen, C.-Y. (2014). Antibacterial properties and cytocompatibility of tantalum oxide coatings. Surface and Coatings Technology, 259(B) 193-198.
  • Chen, X., Bai, R., & Huang, M. (2019). Optical properties of amorphous Ta2O5 thin films deposited by RF magnetron sputtering. Optical Materials, 97, 109404.
  • Dvorsky, D., Kubasek, J., Jablonska, E., Kaufmanova, J. & Vojtech, D. (2020). Mechanical, corrosion and biological properties of advanced biodegradable Mg–MgF2 and WE43-MgF2 composite materials prepared by spark plasma sintering. Journal of Alloys and Compounds, 825, 154016.
  • Gül, C., Albayrak, S., & Çinici, H. (2020). Characterization of Tantalum Oxide Sol–Gel-coated AZ91 Mg Alloys. Transactions of the Indian Institute of Metals, 73 (5), 1249-1256.
  • Gül, C. & Albayrak, S. (2021). WE43 Magnezyum Alaşımlarında Yüzey Modifikasyonlarının Morfolojik Özelliklere Etkisi. C. Yücelbaş (Ed.), Mühendislikte Konstrüksiyon, İmalat ve Malzeme Üzerine Güncel Araştırmalar içinde(27-40). Ankara: İksad Yayınevi.
  • Hänzi, A. C., Gunde, P., Schinhammer, M. & Uggowitzer, P. J. (2009). On the biodegradation performance of an Mg–Y–RE alloy with various surface conditions in simulated body fluid. Acta Biomaterialia, 5(1), 162-171.
  • Höhlinger, M., Heise, S., Wagener, V., Boccaccini, A. R. & Virtanen, S. (2017). Developing surface pre-treatments for electrophoretic deposition of biofunctional chitosan-bioactive glass coatings on a WE43 magnesium alloy. Applied Surface Science, 405, 441-448.
  • Ignat, S., Sallamand, P., Grevey, D. & Lambertin, M. (2004). Magnesium alloys laser (Nd:YAG) cladding and alloying with side injection of aluminium powder. Applied Surface Science, 225(1–4), 124-134.
  • Kubásek, J., Dvorský, D., Čavojský, M., Roudnická, M. & Vojtech, D. (2019). WE43 magnesium alloy – material for challenging applications. Kovove Materialy-Metallic Materials, 57 (3), 159–165.
  • Pereira, G.S., Koga, G.Y., Avila, J.A., Bittencort, I.M., Fernandez, F., Miyazaki, M.H., Botta, W.J. & Bose Filho, W.W. (2021). Corrosion resistance of WE43 Mg alloy in sodium chloride solution. Materials Chemistry and Physics, 272, 124930.
  • Yang, C., Gupta, N., Ding, H. & Xiang, C. (2020). Effect of Microstructure on Corrosion Behavior of WE43 Magnesium Alloy in As Cast and Heat-Treated Conditions. Metals, 10, 1552.
  • Zucchi, F., Grassi, V., Frignani, A., Monticelli, C. & Trabanelli, G. (2006). Influence of a silane treatment on the corrosion resistance of a WE43 magnesium alloy. Surface and Coatings Technology, 200, 4136-4143.

Tantalum-Oxide Coating and Characterization of WE43 Magnesium Alloys by RF Sputtering Method

Year 2021, Volume 13, Issue 3, 32 - 39, 31.12.2021
https://doi.org/10.29137/umagd.1035754

Abstract

Magnesium alloys are frequently used in the automotive and aerospace industries due to their high specific strength. Various studies are carried out to increase the wear and corrosion resistance of alloys. The study includes the coating and characterization of WE43 magnesium alloys, with tantalum-oxide. Tantalum-oxide coatings were applied to WE43 magnesium alloy by RF sputtering method. In order to observe the effect of acid etching applied to the surfaces before the coating process, H2SO4 and HCl acid mixtures were used and the samples were subjected to acid etching after polishing at 25, 45, 65 and 85 °C, with in contact with the acid. The effects of the applied acid etching processes on the coated surfaces were investigated within the study. The effects of the applied processes on surface morphology before coating, the metallurgical bond formed between the surface and coating layer and the surface properties after coating were investigated by scanning electron microscopy, energy distribution spectroscopy, X-ray scanning and coating thickness measurements taken from the cross section. As a result, it was determined there were differences in the surfaces before the coating, cracked and worn areas were observed, and nevertheless, crack-free/non-porous, continuous and homogeneous coating layers were obtained on the surfaces. The applied surface treatments caused changes in the surface chemistry and morphology. Coating thicknesses were obtained as 2.52±0.02 µm.

References

  • Almeida, E. (2001). Surface Treatments and Coatings for Metals. A General Overview, Surface Treatments, Surface Preparation, and the Nature of Coatings. Industrial & Engineering Chemistry Research, 40(1), 3-14.
  • Antion, C., Donnadieu, P. & Perrard, F. (2003). Hardening precipitation in a Mg–4Y–3RE alloy. Acta Materialia, 51, 5335-5348.
  • Bansal, N. P. (1993). Low Temperature Synthesis of Monolithic Transparent Ta205 Gels From Hydrolysis of Metal Alkoxide. NASA Technical Memorandum, 106246.
  • Byun, S.-H., Lim, H.-K., Cheon, K.-H., Lee, S.-M., Kim, H.-E. & Lee, J.-H. (2020). Biodegradable magnesium alloy (WE43) in bone-fixation plateand screw. Journal of Biomedical Materials Research: Part B Applied Biomaterials, 108B, 2505-2512.
  • Cao, G., Zhang, D., Zhang, W. & Zhang, W. (2016). In Vitro Corrosion Study of Friction Stir ProcessedWE43 Magnesium Alloy in a Simulated Body Fluid. Materials, 9, 542.
  • Chang, Y.-Y., Huang, H.-L., Chen, H.-J., Lai, C.-H., and Wen, C.-Y. (2014). Antibacterial properties and cytocompatibility of tantalum oxide coatings. Surface and Coatings Technology, 259(B) 193-198.
  • Chen, X., Bai, R., & Huang, M. (2019). Optical properties of amorphous Ta2O5 thin films deposited by RF magnetron sputtering. Optical Materials, 97, 109404.
  • Dvorsky, D., Kubasek, J., Jablonska, E., Kaufmanova, J. & Vojtech, D. (2020). Mechanical, corrosion and biological properties of advanced biodegradable Mg–MgF2 and WE43-MgF2 composite materials prepared by spark plasma sintering. Journal of Alloys and Compounds, 825, 154016.
  • Gül, C., Albayrak, S., & Çinici, H. (2020). Characterization of Tantalum Oxide Sol–Gel-coated AZ91 Mg Alloys. Transactions of the Indian Institute of Metals, 73 (5), 1249-1256.
  • Gül, C. & Albayrak, S. (2021). WE43 Magnezyum Alaşımlarında Yüzey Modifikasyonlarının Morfolojik Özelliklere Etkisi. C. Yücelbaş (Ed.), Mühendislikte Konstrüksiyon, İmalat ve Malzeme Üzerine Güncel Araştırmalar içinde(27-40). Ankara: İksad Yayınevi.
  • Hänzi, A. C., Gunde, P., Schinhammer, M. & Uggowitzer, P. J. (2009). On the biodegradation performance of an Mg–Y–RE alloy with various surface conditions in simulated body fluid. Acta Biomaterialia, 5(1), 162-171.
  • Höhlinger, M., Heise, S., Wagener, V., Boccaccini, A. R. & Virtanen, S. (2017). Developing surface pre-treatments for electrophoretic deposition of biofunctional chitosan-bioactive glass coatings on a WE43 magnesium alloy. Applied Surface Science, 405, 441-448.
  • Ignat, S., Sallamand, P., Grevey, D. & Lambertin, M. (2004). Magnesium alloys laser (Nd:YAG) cladding and alloying with side injection of aluminium powder. Applied Surface Science, 225(1–4), 124-134.
  • Kubásek, J., Dvorský, D., Čavojský, M., Roudnická, M. & Vojtech, D. (2019). WE43 magnesium alloy – material for challenging applications. Kovove Materialy-Metallic Materials, 57 (3), 159–165.
  • Pereira, G.S., Koga, G.Y., Avila, J.A., Bittencort, I.M., Fernandez, F., Miyazaki, M.H., Botta, W.J. & Bose Filho, W.W. (2021). Corrosion resistance of WE43 Mg alloy in sodium chloride solution. Materials Chemistry and Physics, 272, 124930.
  • Yang, C., Gupta, N., Ding, H. & Xiang, C. (2020). Effect of Microstructure on Corrosion Behavior of WE43 Magnesium Alloy in As Cast and Heat-Treated Conditions. Metals, 10, 1552.
  • Zucchi, F., Grassi, V., Frignani, A., Monticelli, C. & Trabanelli, G. (2006). Influence of a silane treatment on the corrosion resistance of a WE43 magnesium alloy. Surface and Coatings Technology, 200, 4136-4143.

Details

Primary Language Turkish
Subjects Metallurgy and Metallurgical Engineering
Journal Section Articles
Authors

Canser GÜL
MANİSA CELÂL BAYAR ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ, METALURJİ VE MALZEME MÜHENDİSLİĞİ BÖLÜMÜ
0000-0002-1339-936X
Türkiye


Sevda ALBAYRAK (Primary Author)
GAZİ ÜNİVERSİTESİ, TEKNOLOJİ FAKÜLTESİ, METALURJİ VE MALZEME MÜHENDİSLİĞİ BÖLÜMÜ, METALURJİ VE MALZEME MÜHENDİSLİĞİ ANABİLİM DALI
0000-0002-1504-8061
Türkiye


Hanifi ÇİNİCİ
GAZİ ÜNİVERSİTESİ, TEKNOLOJİ FAKÜLTESİ, METALURJİ VE MALZEME MÜHENDİSLİĞİ BÖLÜMÜ, METALURJİ VE MALZEME MÜHENDİSLİĞİ PR.
0000-0001-6983-0772
Türkiye

Publication Date December 31, 2021
Published in Issue Year 2021, Volume 13, Issue 3

Cite

APA Gül, C. , Albayrak, S. & Çinici, H. (2021). WE43 Magnezyum Alaşımlarının RF Sıçratma Yöntemi ile Tantal-Oksit Kaplanması ve Karakterizasyonu . International Journal of Engineering Research and Development , December 2021 Special Issue , 32-39 . DOI: 10.29137/umagd.1035754

All Rights Reserved. Kırıkkale University, Faculty of Engineering.