Conference Paper
BibTex RIS Cite

Autotransporter Proteins

Year 2021, Volume: 13 Issue: 3, 49 - 57, 31.12.2021
https://doi.org/10.29137/umagd.1037361

Abstract

Autotransporter proteins, which are examined under five groups on the basis of their secretory systems, constitute the largest protein family found in Gram-negative pathogenic bacteria. The determination that all autotransporter proteins are associated with pathogenicity and virulence in these bacteria has made them the focus of molecular pathogenicity studies. Although the structural organization of autotransporter proteins and the base sequences of the genes encoding them are highly similar, their functions in the strains they are found in show a high diversity. This indicates that pathogen-host adaptation may also result from differences in protein processing and secretion system, and that new and effective approaches can be developed in the fight against pathogens. In this review article, the contemporary literature of this important protein family has been examined, and it has been tried to be interpreted as a basis for new scientific studies.

References

  • Abreu, A. G., Abe, C. M., Nunes, K. O., Moraes, C. T. P., Chavez-Dueñas, L., Navarro-Garcia, F. (2016). The serine protease Pic as a virulence factor of atypical enteropathogenic Escherichia coli. Gut Microbes 7, 115–125. doi: 10.1080/19490976.2015.1136775.
  • Baud, C., Guérin, J., Petit, E., Lesne, E., Dupré, E., Locht, C. (2014). Translocation path of a substrate protein through its Omp85 transporter. Nat. Commun. 5:5271-5275. doi: 10.1038/ncomms6271.
  • Benanti, E. L., Nguyen, C. M., and Welch, M. D. (2015). Virulent burkholderiaspecies mimic host actin polymerases to drive actin-based motility. Cell 161, 348–360. doi: 10.1016/j.cell.2015.02.044.
  • Berne, C., Ducret, A., Hardy, G. G., and Brun, Y. V. (2015). Adhesins involved in attachment to abiotic surfaces by Gram-negative bacteria. Microbiol. Spectr. 3,1–45. doi: 10.1128/microbiolspec.MB-0018-2015.
  • Bhullar, K.; Zarepour, M.; Yu, H.; Yang, H.; Croxen, M.; Stahl, M.; Finlay, B.B.; Turvey, S.E.; Vallance, B.A. (2015). The Serine Protease Autotransporter Pic Modulates Citrobacter Rodentium Pathogenesis and Its Innate Recognition by the Host. Infect. Immun. 83, 2636–2650.
  • Brockmeyer, J.; Spelten, S.; Kuczius, T.; Bielaszewska, M.; Karch, H. (2009). Structure and Function Relationship of the Autotransport and Proteolytic Activity of Espp from Shiga Toxin-Producing Escherichia coli. PLoS ONE, 4, e6100.
  • Casasanta, M. A., Yoo, C. C., Smith, H. B., Duncan, A. J., Cochrane, K., Varano, A. C. (2017). A chemical and biological toolbox for Type Vd secretion: characterization of the phospholipase A1 autotransporter FplA from Fusobacterium nucleatum. J. Biol. Chem. 292, 20240–20254. doi: 10.1074/jbc. M117.819144.
  • Chauhan, N., Wrobel, A., Skurnik, M., and Leo, J. C. (2016). Yersinia adhesins: an arsenal for infection. Proteomics Clin. Appl. 10, 949–963. doi: 10.1002/prca. 201600012. Chauhan, N., Hatlem, D., Orwick-Rydmark, M., Schneider, K., Floetenmeyer, M., van Rossum, B. (2019). Insights into the autotransport process of a trimeric autotransporter, Yersinia Adhesin A (YadA). Mol. Microbiol. 111,844–862. doi: 10.1111/mmi.14195.
  • Coppens, F., Castaldo, G., Debraekeleer, A., Subedi, S., Moonens, K., Lo, A. (2018). Hop-family Helicobacter outer membrane adhesins form a novel class of Type 5-like secretion proteins with an interrupted b-barrel domain. Mol. Microbiol. 110, 33–46. doi: 10.1111/mmi.14075.
  • Da Mata Madeira, P. V., Zouhir, S., Basso, P., Neves, D., Laubier, A., Salacha, R. (2016). Structural basis of lipid targeting and destruction by the type v secretion system of Pseudomonas aeruginosa. J. Mol. Biol. 428, 1790–1803. doi: 10.1016/j.jmb.2016.03.012.
  • Deibel, C., Krämer, S., Chakraborty, T., Ebel, F. (1998). EspE, a novel secreted protein of attaching and effacing bacteria, is directly translocated into infected host cells, where it appears as a tyrosine-phosphorylated 90 kDa protein. Mol. Microbiol. 28, 463–474. doi: 10.1046/j.1365-2958.1998.00 798.
  • Desvaux, M., Khan, A., Beatson, S. A., Scott-Tucker, A., and Henderson, I. R. (2005). Protein secretion systems in Fusobacterium nucleatum: Genomic identification of Type 4 piliation and complete Type V pathways brings new insight into mechanisms of pathogenesis. Biochim. Biophys. Acta 1713, 92–112. doi: 10.1016/j.bbamem.2005.05.002.
  • El Tahir, Y., Skurnik, M. (2001). YadA, the multifaceted Yersinia adhesin. Int. J. Med. Microbiol. 291, 209–218. doi: 10.1078/1438-4221- 00119. Fulcher, R. A., Cole, L. E., Janowicz, D. M., Toffer, K. L., Fortney, K. R., Katz, B. P. (2006). Expression of Haemophilus ducreyi collagen binding outer membrane protein NcaA is required for virulence in swine and human challenge models of chancroid. Infect. Immun. 74, 2651–2658. doi: 10.1128/iai. 74.5.2651-2658.2006.
  • Guyer, D.M.; Radulovic, S.; Jones, F.-E.; Mobley, H.L.T. (2002). Sat, the Secreted Autotransporter Toxin of Uropathogenic Escherichia coli, Is a Vacuolating Cytotoxin for Bladder and Kidney Epithelial Cells. Infect. Immun. 70, 4539–4546.
  • Habouria, H., Pokharel, P., Maris, S., Garénaux, A., Bessaiah, H., Houle, S., Veyrier, F.J., Guyomard-Rabenirina, S., Talarmin, A., Dozois, C.M. (2019). Three New Serine-Protease Autotransporters of Enterobacteriaceae (SPATEs) from Extra-Intestinal Pathogenic Escherichia coli and Combined Role of Spates for Cytotoxicity and Colonization of the Mouse Kidney. Virulence. 10, 568–587.
  • Heimer, S.R., Rasko, D.A., Lockatell, C.V., Johnson, D.E., Mobley, H.L.T. (2004). Autotransporter Genes Pic and Tsh Are Associated with Escherichia coli Strains That Cause Acute Pyelonephritis and Are Expressed During Urinary Tract Infection. Infect. Immun. 72, 593–597.
  • Hendrixson, D.R.; St Geme, J.W. (1998). The Haemophilus Influenzae Hap Serine Protease Promotes Adherence and Microcolony Formation, Potentiated by a Soluble Host Protein. Mol. Cell. 2, 841–850.
  • Ishikawa, M., Nakatani, H., Hori, K., Hori, K., Matsumoto, S., Soto, G. (2012). AtaA, a new member of the Trimeric Autotransporter Adhesins from Acinetobacter sp. Tol 5 mediating high adhesiveness to various abiotic surfaces.PLoS One 7:e48830. doi: 10.1371/journal.pone.0048830.
  • Jacob-Dubuisson, F., Guérin, J., Baelen, S., Clantin, B. (2013). Two-partnerv secretion: As simple as it sounds? Res. Microbiol. 164, 583–595. doi: 10.1016/j.resmic.2013.03.009.
  • Jain, S., Goldberg, M. B. (2007). Requirement for YaeT in the outer membrane assembly of autotransporter proteins. J. Bacteriol. 189, 5393–5398. doi: 10.1128/ jb.00228-07.
  • Junker, M., Schuster, C. C., McDonnell, A. V., Sorg, K. A., Finn, M. C., Berger, B. (2006). Pertactin beta-helix folding mechanism suggests common themes for the secretion and folding of autotransporter proteins.
  • Junker, M., Besingi, R. N., Clark, P. L. (2009). Vectorial transport and folding of an autotransporter virulence protein during outer membrane secretion. Mol.Microbiol. 71, 1323–1332. doi: 10.1111/j.1365-2958.2009.06607.
  • Kingsley, R. A., Santos, R. L., Keestra, A. M., Adams, L. G., and Bäumler, A. J. (2002). Salmonella enterica serotype Typhimurium ShdA is an outer membrane fibronectin-binding protein that is expressed in the intestine. Mol.Microbiol. 43, 895–905. doi: 10.1046/j.1365-2958.2002.02805.
  • Kingsley, R. A., Ghanem, D. A., Puebla-Osorio, N., Keestra, A. M., Berghman, L., Bäumler, A. J. (2004). Fibronectin binding to the Salmonella enterica serotype typhimurium ShdA autotransporter protein is inhibited by amonoclonal antibody recognizing the A3 repeat. J. Bacteriol. 186, 4931–4939. doi: 10.1128/jb.186.15.4931-4939.2004.
  • Leo, C. J., Linke, D. (2018). A unified model for BAM function that takes into account type Vc secretion and species differences in BAM composition. AIMS Microbiol. 4, 455–468. doi: 10.3934/microbiol.2018.3.455.
  • Maroncle, N.M., Sivick, K.E., Brady, R., Stokes, F.-E., Mobley, H.L.T. (2006). Protease Activity, Secretion, Cell Entry, Cytotoxicity, and Cellular Targets of SecretedAutotransporter Toxin ofUropathogenic Escherichia coli. Infect. Immun. 74, 6124–6134.
  • Meuskens, I., Saragliadis, A., Leo, J.C., Linke, D. (2015). Type V Secretion Systems: An Overview of Passenger Domain Functions. Frontiers in Microbiology, doi: 10.3389/fmicb.2019.01163.
  • Nava-Acosta, R., Navarro-Garcia, F. (2013). Cytokeratin 8 Is an Epithelial Cell Receptor for Pet, a Cytotoxic Serine Protease Autotransporter of Enterobacteriaceae. MBio. 4, e00838-13.
  • Navarro-Garcia, F., Serapio-Palacios, A., Vidal, J.E., Salazar, M.I., Tapia-Pastrana, G. (2014). Espc Promotes Epithelial Cell Detachment by Enteropathogenic Escherichia coli Via Sequential Cleavages of a Cytoskeletal Protein and Then Focal Adhesion Proteins. Infect. Immun. 2014, 82, 2255–2265.
  • Olvera, A., Pina, S., Pérez-Simó, M., Aragón, V., Segalés, J., Bensaid, A. (2011). Immunogenicity and protection against Haemophilus parasuis infection after vaccination with recombinant virulence associated trimeric autotransporters (VtaA). Vaccine 29, 2797–2802. doi: 10.1016/j.vaccine.2011.01.105.
  • Otto, B. R., Sijbrandi, R., Luirink, J., Oudega, B., Heddle, J. G., Mizutani, K. (2005). Crystal structure of hemoglobin protease, a heme binding autotransporter protein from pathogenic Escherichia coli. J. Biol. Chem. 280, do17339–17345. doi: 10.1074/jbc.m412885200.
  • Pokharel, P., Habouria, H., Bessaiah, H., Dozois, C.M. (2019). Serine Protease Autotransporters of the Enterobacteriaceae (SPATEs): Out and About and Chopping It Up. Microorganisms. 7, 594-600.
  • Pokharel, P., Díaz, J.M,, Bessaiah, H., Houle, S., Guerrero-Barrera, A., Dozois., C.M. (2020). The Serine Protease Autotransporters TagB, TagC, and Sha from Extraintestinal Pathogenic Escherichia coliAre Internalized by Human Bladder Epithelial Cells and Cause Actin Cytoskeletal Disruption Int. J. Mol. Sci. 2020, 21, 3047-3052.
  • Ruiz-Perez, F., Henderson, I.R., Leyton, D.L., Rossiter, A.E., Zhang, Y., Nataro, J.P. (2009). Roles of periplasmic chaperone proteins in the biogenesis of serine protease autotransporters of Enterobacteriaceae. J. Bacteriol. 191, 6571–6583.
  • Rutherford, N., Mourez, M. (2006). Surface display of proteins by Gram-negative bacterial autotransporters. Microb. Cell Factories 5, 22. Schmidt, M.A., Riley, L.W., Benz, I. (2003). Sweet new world: glycoproteins in bacterial pathogens. Trends Microbiol. 11, 554–561.
  • Serruto, D., Spadafina, T., Scarselli, M., Bambini, S., Comanducci, M., Höhle, S., Kilian, Soprova, Z., Sauri, A., van Ulsen, P., Tame, J.R., den Blaauwen, T., Jong, W.S., Luirink, J. (2010). A conserved aromatic residue in the autochaperone domain of the autotransporter Hbp is critical for initiation of outer membrane translocation. J. Biol. Chem. 285, 38224–38233.
  • St Geme III, J.W., Yeo, H.J. (2009). A prototype two-partner secretion pathway: the Haemophilus influenza HMW1 and HMW2 adhesin systems. Trends Microbiol.17, 355–360.
  • Suhr, M., Benz, I., Schmidt, M.A. (1996). Processing of the AIDA-I precursor: removal of AIDAc and evidence for the outer membrane anchoring as a  -barrel structure. Mol. Microbiol. 22, 31–42.
  • Tajima, N., Kawai, F., Park, S.Y., Tame, J.R.H. (2010). A novel intein-like autoproteolytic mechanism in autotransporter proteins. J. Mol. Biol. 402, 645–656.
  • Thanassi, D.G., Stathopoulos, C., Karkal, A., Li, H. (2005). Protein secretion in the absence of ATP: the autotransporter, two-partner secretion and chaperon/ usher pathways of Gram-negative bacteria. Mol. Membr. Biol. 22,63–72.
  • Tian, P., Bernstein, H.D. (2010). Molecular basis for the structural stability on an enclosed-barrel loop. J. Mol. Biol. 402, 475–489.
  • Van Ulsen, P., van Alphen, L., ten Hove, J., Fransen, F., van der Ley, P., Tommassen, J. (2003). A neisserial autotransporter NalP modulating the processing of other autotransporters. Mol. Microbiol. 50, 1017–1030.
  • Veiga, E., de Lorenzo, V., Fernández, L.A. (2004). Structural tolerance of bacterial autotransporters for folded passenger protein domains. Mol. Microbiol. 52,1069–1080.
  • Wells, T.J., Tree, J.J., Ulett, G.C., Schembri, M.A. (2007). Autotransporter proteins: novel targets at the bacterial cell surface. FEMS Microbiol. Lett. 274, 163–172.
  • Westendorf, A.M., Gunzer, F., Deppenmeier, S., Tapadar, D., Hunger, J.K., Schmidt, M.A., Buer, J., Bruder, D. (2005). Intestinal immunity of Escherichia coli NISSLE 1917: a safe carrier for therapeutic molecules. FEMS Immunol. Med. Microbiol. 43, 373–384.
  • Wouter, S.P.J., Sauri, A., Luirink, J. (2010). Extracellular production of recombinant proteins using bacterial autotransporters. Curr. Opin. Biotechnol. 21, 646–652.
  • Yeo, H.J., Cotter, S.E., Laarmann, S., Juehne, T., St Geme III, J.W., Waksman, G. (2004). Structural basis for host recognition by the Haemophilus influenzae Hia autotransporter. EMBO J. 23, 1245–1256.
  • Zhao, L., Nguyen, N.T., Fernandez, R.C., Murphy, M.E. (2009). Crystallographic characterization of the passenger domain of the Bordetella autotransporter BrkA. ActaCrystallogr. Sect. F Struct. Biol. Cryst. Comm. 65, 608–611.
Year 2021, Volume: 13 Issue: 3, 49 - 57, 31.12.2021
https://doi.org/10.29137/umagd.1037361

Abstract

References

  • Abreu, A. G., Abe, C. M., Nunes, K. O., Moraes, C. T. P., Chavez-Dueñas, L., Navarro-Garcia, F. (2016). The serine protease Pic as a virulence factor of atypical enteropathogenic Escherichia coli. Gut Microbes 7, 115–125. doi: 10.1080/19490976.2015.1136775.
  • Baud, C., Guérin, J., Petit, E., Lesne, E., Dupré, E., Locht, C. (2014). Translocation path of a substrate protein through its Omp85 transporter. Nat. Commun. 5:5271-5275. doi: 10.1038/ncomms6271.
  • Benanti, E. L., Nguyen, C. M., and Welch, M. D. (2015). Virulent burkholderiaspecies mimic host actin polymerases to drive actin-based motility. Cell 161, 348–360. doi: 10.1016/j.cell.2015.02.044.
  • Berne, C., Ducret, A., Hardy, G. G., and Brun, Y. V. (2015). Adhesins involved in attachment to abiotic surfaces by Gram-negative bacteria. Microbiol. Spectr. 3,1–45. doi: 10.1128/microbiolspec.MB-0018-2015.
  • Bhullar, K.; Zarepour, M.; Yu, H.; Yang, H.; Croxen, M.; Stahl, M.; Finlay, B.B.; Turvey, S.E.; Vallance, B.A. (2015). The Serine Protease Autotransporter Pic Modulates Citrobacter Rodentium Pathogenesis and Its Innate Recognition by the Host. Infect. Immun. 83, 2636–2650.
  • Brockmeyer, J.; Spelten, S.; Kuczius, T.; Bielaszewska, M.; Karch, H. (2009). Structure and Function Relationship of the Autotransport and Proteolytic Activity of Espp from Shiga Toxin-Producing Escherichia coli. PLoS ONE, 4, e6100.
  • Casasanta, M. A., Yoo, C. C., Smith, H. B., Duncan, A. J., Cochrane, K., Varano, A. C. (2017). A chemical and biological toolbox for Type Vd secretion: characterization of the phospholipase A1 autotransporter FplA from Fusobacterium nucleatum. J. Biol. Chem. 292, 20240–20254. doi: 10.1074/jbc. M117.819144.
  • Chauhan, N., Wrobel, A., Skurnik, M., and Leo, J. C. (2016). Yersinia adhesins: an arsenal for infection. Proteomics Clin. Appl. 10, 949–963. doi: 10.1002/prca. 201600012. Chauhan, N., Hatlem, D., Orwick-Rydmark, M., Schneider, K., Floetenmeyer, M., van Rossum, B. (2019). Insights into the autotransport process of a trimeric autotransporter, Yersinia Adhesin A (YadA). Mol. Microbiol. 111,844–862. doi: 10.1111/mmi.14195.
  • Coppens, F., Castaldo, G., Debraekeleer, A., Subedi, S., Moonens, K., Lo, A. (2018). Hop-family Helicobacter outer membrane adhesins form a novel class of Type 5-like secretion proteins with an interrupted b-barrel domain. Mol. Microbiol. 110, 33–46. doi: 10.1111/mmi.14075.
  • Da Mata Madeira, P. V., Zouhir, S., Basso, P., Neves, D., Laubier, A., Salacha, R. (2016). Structural basis of lipid targeting and destruction by the type v secretion system of Pseudomonas aeruginosa. J. Mol. Biol. 428, 1790–1803. doi: 10.1016/j.jmb.2016.03.012.
  • Deibel, C., Krämer, S., Chakraborty, T., Ebel, F. (1998). EspE, a novel secreted protein of attaching and effacing bacteria, is directly translocated into infected host cells, where it appears as a tyrosine-phosphorylated 90 kDa protein. Mol. Microbiol. 28, 463–474. doi: 10.1046/j.1365-2958.1998.00 798.
  • Desvaux, M., Khan, A., Beatson, S. A., Scott-Tucker, A., and Henderson, I. R. (2005). Protein secretion systems in Fusobacterium nucleatum: Genomic identification of Type 4 piliation and complete Type V pathways brings new insight into mechanisms of pathogenesis. Biochim. Biophys. Acta 1713, 92–112. doi: 10.1016/j.bbamem.2005.05.002.
  • El Tahir, Y., Skurnik, M. (2001). YadA, the multifaceted Yersinia adhesin. Int. J. Med. Microbiol. 291, 209–218. doi: 10.1078/1438-4221- 00119. Fulcher, R. A., Cole, L. E., Janowicz, D. M., Toffer, K. L., Fortney, K. R., Katz, B. P. (2006). Expression of Haemophilus ducreyi collagen binding outer membrane protein NcaA is required for virulence in swine and human challenge models of chancroid. Infect. Immun. 74, 2651–2658. doi: 10.1128/iai. 74.5.2651-2658.2006.
  • Guyer, D.M.; Radulovic, S.; Jones, F.-E.; Mobley, H.L.T. (2002). Sat, the Secreted Autotransporter Toxin of Uropathogenic Escherichia coli, Is a Vacuolating Cytotoxin for Bladder and Kidney Epithelial Cells. Infect. Immun. 70, 4539–4546.
  • Habouria, H., Pokharel, P., Maris, S., Garénaux, A., Bessaiah, H., Houle, S., Veyrier, F.J., Guyomard-Rabenirina, S., Talarmin, A., Dozois, C.M. (2019). Three New Serine-Protease Autotransporters of Enterobacteriaceae (SPATEs) from Extra-Intestinal Pathogenic Escherichia coli and Combined Role of Spates for Cytotoxicity and Colonization of the Mouse Kidney. Virulence. 10, 568–587.
  • Heimer, S.R., Rasko, D.A., Lockatell, C.V., Johnson, D.E., Mobley, H.L.T. (2004). Autotransporter Genes Pic and Tsh Are Associated with Escherichia coli Strains That Cause Acute Pyelonephritis and Are Expressed During Urinary Tract Infection. Infect. Immun. 72, 593–597.
  • Hendrixson, D.R.; St Geme, J.W. (1998). The Haemophilus Influenzae Hap Serine Protease Promotes Adherence and Microcolony Formation, Potentiated by a Soluble Host Protein. Mol. Cell. 2, 841–850.
  • Ishikawa, M., Nakatani, H., Hori, K., Hori, K., Matsumoto, S., Soto, G. (2012). AtaA, a new member of the Trimeric Autotransporter Adhesins from Acinetobacter sp. Tol 5 mediating high adhesiveness to various abiotic surfaces.PLoS One 7:e48830. doi: 10.1371/journal.pone.0048830.
  • Jacob-Dubuisson, F., Guérin, J., Baelen, S., Clantin, B. (2013). Two-partnerv secretion: As simple as it sounds? Res. Microbiol. 164, 583–595. doi: 10.1016/j.resmic.2013.03.009.
  • Jain, S., Goldberg, M. B. (2007). Requirement for YaeT in the outer membrane assembly of autotransporter proteins. J. Bacteriol. 189, 5393–5398. doi: 10.1128/ jb.00228-07.
  • Junker, M., Schuster, C. C., McDonnell, A. V., Sorg, K. A., Finn, M. C., Berger, B. (2006). Pertactin beta-helix folding mechanism suggests common themes for the secretion and folding of autotransporter proteins.
  • Junker, M., Besingi, R. N., Clark, P. L. (2009). Vectorial transport and folding of an autotransporter virulence protein during outer membrane secretion. Mol.Microbiol. 71, 1323–1332. doi: 10.1111/j.1365-2958.2009.06607.
  • Kingsley, R. A., Santos, R. L., Keestra, A. M., Adams, L. G., and Bäumler, A. J. (2002). Salmonella enterica serotype Typhimurium ShdA is an outer membrane fibronectin-binding protein that is expressed in the intestine. Mol.Microbiol. 43, 895–905. doi: 10.1046/j.1365-2958.2002.02805.
  • Kingsley, R. A., Ghanem, D. A., Puebla-Osorio, N., Keestra, A. M., Berghman, L., Bäumler, A. J. (2004). Fibronectin binding to the Salmonella enterica serotype typhimurium ShdA autotransporter protein is inhibited by amonoclonal antibody recognizing the A3 repeat. J. Bacteriol. 186, 4931–4939. doi: 10.1128/jb.186.15.4931-4939.2004.
  • Leo, C. J., Linke, D. (2018). A unified model for BAM function that takes into account type Vc secretion and species differences in BAM composition. AIMS Microbiol. 4, 455–468. doi: 10.3934/microbiol.2018.3.455.
  • Maroncle, N.M., Sivick, K.E., Brady, R., Stokes, F.-E., Mobley, H.L.T. (2006). Protease Activity, Secretion, Cell Entry, Cytotoxicity, and Cellular Targets of SecretedAutotransporter Toxin ofUropathogenic Escherichia coli. Infect. Immun. 74, 6124–6134.
  • Meuskens, I., Saragliadis, A., Leo, J.C., Linke, D. (2015). Type V Secretion Systems: An Overview of Passenger Domain Functions. Frontiers in Microbiology, doi: 10.3389/fmicb.2019.01163.
  • Nava-Acosta, R., Navarro-Garcia, F. (2013). Cytokeratin 8 Is an Epithelial Cell Receptor for Pet, a Cytotoxic Serine Protease Autotransporter of Enterobacteriaceae. MBio. 4, e00838-13.
  • Navarro-Garcia, F., Serapio-Palacios, A., Vidal, J.E., Salazar, M.I., Tapia-Pastrana, G. (2014). Espc Promotes Epithelial Cell Detachment by Enteropathogenic Escherichia coli Via Sequential Cleavages of a Cytoskeletal Protein and Then Focal Adhesion Proteins. Infect. Immun. 2014, 82, 2255–2265.
  • Olvera, A., Pina, S., Pérez-Simó, M., Aragón, V., Segalés, J., Bensaid, A. (2011). Immunogenicity and protection against Haemophilus parasuis infection after vaccination with recombinant virulence associated trimeric autotransporters (VtaA). Vaccine 29, 2797–2802. doi: 10.1016/j.vaccine.2011.01.105.
  • Otto, B. R., Sijbrandi, R., Luirink, J., Oudega, B., Heddle, J. G., Mizutani, K. (2005). Crystal structure of hemoglobin protease, a heme binding autotransporter protein from pathogenic Escherichia coli. J. Biol. Chem. 280, do17339–17345. doi: 10.1074/jbc.m412885200.
  • Pokharel, P., Habouria, H., Bessaiah, H., Dozois, C.M. (2019). Serine Protease Autotransporters of the Enterobacteriaceae (SPATEs): Out and About and Chopping It Up. Microorganisms. 7, 594-600.
  • Pokharel, P., Díaz, J.M,, Bessaiah, H., Houle, S., Guerrero-Barrera, A., Dozois., C.M. (2020). The Serine Protease Autotransporters TagB, TagC, and Sha from Extraintestinal Pathogenic Escherichia coliAre Internalized by Human Bladder Epithelial Cells and Cause Actin Cytoskeletal Disruption Int. J. Mol. Sci. 2020, 21, 3047-3052.
  • Ruiz-Perez, F., Henderson, I.R., Leyton, D.L., Rossiter, A.E., Zhang, Y., Nataro, J.P. (2009). Roles of periplasmic chaperone proteins in the biogenesis of serine protease autotransporters of Enterobacteriaceae. J. Bacteriol. 191, 6571–6583.
  • Rutherford, N., Mourez, M. (2006). Surface display of proteins by Gram-negative bacterial autotransporters. Microb. Cell Factories 5, 22. Schmidt, M.A., Riley, L.W., Benz, I. (2003). Sweet new world: glycoproteins in bacterial pathogens. Trends Microbiol. 11, 554–561.
  • Serruto, D., Spadafina, T., Scarselli, M., Bambini, S., Comanducci, M., Höhle, S., Kilian, Soprova, Z., Sauri, A., van Ulsen, P., Tame, J.R., den Blaauwen, T., Jong, W.S., Luirink, J. (2010). A conserved aromatic residue in the autochaperone domain of the autotransporter Hbp is critical for initiation of outer membrane translocation. J. Biol. Chem. 285, 38224–38233.
  • St Geme III, J.W., Yeo, H.J. (2009). A prototype two-partner secretion pathway: the Haemophilus influenza HMW1 and HMW2 adhesin systems. Trends Microbiol.17, 355–360.
  • Suhr, M., Benz, I., Schmidt, M.A. (1996). Processing of the AIDA-I precursor: removal of AIDAc and evidence for the outer membrane anchoring as a  -barrel structure. Mol. Microbiol. 22, 31–42.
  • Tajima, N., Kawai, F., Park, S.Y., Tame, J.R.H. (2010). A novel intein-like autoproteolytic mechanism in autotransporter proteins. J. Mol. Biol. 402, 645–656.
  • Thanassi, D.G., Stathopoulos, C., Karkal, A., Li, H. (2005). Protein secretion in the absence of ATP: the autotransporter, two-partner secretion and chaperon/ usher pathways of Gram-negative bacteria. Mol. Membr. Biol. 22,63–72.
  • Tian, P., Bernstein, H.D. (2010). Molecular basis for the structural stability on an enclosed-barrel loop. J. Mol. Biol. 402, 475–489.
  • Van Ulsen, P., van Alphen, L., ten Hove, J., Fransen, F., van der Ley, P., Tommassen, J. (2003). A neisserial autotransporter NalP modulating the processing of other autotransporters. Mol. Microbiol. 50, 1017–1030.
  • Veiga, E., de Lorenzo, V., Fernández, L.A. (2004). Structural tolerance of bacterial autotransporters for folded passenger protein domains. Mol. Microbiol. 52,1069–1080.
  • Wells, T.J., Tree, J.J., Ulett, G.C., Schembri, M.A. (2007). Autotransporter proteins: novel targets at the bacterial cell surface. FEMS Microbiol. Lett. 274, 163–172.
  • Westendorf, A.M., Gunzer, F., Deppenmeier, S., Tapadar, D., Hunger, J.K., Schmidt, M.A., Buer, J., Bruder, D. (2005). Intestinal immunity of Escherichia coli NISSLE 1917: a safe carrier for therapeutic molecules. FEMS Immunol. Med. Microbiol. 43, 373–384.
  • Wouter, S.P.J., Sauri, A., Luirink, J. (2010). Extracellular production of recombinant proteins using bacterial autotransporters. Curr. Opin. Biotechnol. 21, 646–652.
  • Yeo, H.J., Cotter, S.E., Laarmann, S., Juehne, T., St Geme III, J.W., Waksman, G. (2004). Structural basis for host recognition by the Haemophilus influenzae Hia autotransporter. EMBO J. 23, 1245–1256.
  • Zhao, L., Nguyen, N.T., Fernandez, R.C., Murphy, M.E. (2009). Crystallographic characterization of the passenger domain of the Bordetella autotransporter BrkA. ActaCrystallogr. Sect. F Struct. Biol. Cryst. Comm. 65, 608–611.
There are 48 citations in total.

Details

Primary Language English
Subjects Materials Engineering (Other)
Journal Section Articles
Authors

Şeyma Göksel 0000-0003-4463-0912

Mustafa Akçelik 0000-0002-1227-2324

Publication Date December 31, 2021
Submission Date October 7, 2021
Published in Issue Year 2021 Volume: 13 Issue: 3

Cite

APA Göksel, Ş., & Akçelik, M. (2021). Autotransporter Proteins. International Journal of Engineering Research and Development, 13(3), 49-57. https://doi.org/10.29137/umagd.1037361

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.